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» Definition
A is called a set if all of its operations are projections. Otherwise,
we say A is nontrivial.

» Definition
An idempotent algebra is Taylor if the variety it generates does not
contain a two element set.

> All algebras in this talk will be idempotent, so | won't mention
idempotence further.
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Useful facts about Taylor algebras

» Theorem (Bulatov and Jeavons)
A finite algebra A is Taylor iff there is no set in HS(A).

» Theorem (Barto and Kozik)

A finite algebra A is Taylor iff for every number n such that every
prime factor of n is greater than |A|, there is an n-ary cyclic term
c, Ie.

(X1, X2, +vey Xn) & €(X24 +eey Xy X1)-

» Corollary
A finite algebra is Taylor iff it has a 4-ary term t satisfying the
identity
t(x, x,y, z) =~ t(y, z, z, x).
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Minimal Taylor algebras

» My interest in Taylor algebras comes from the study of CSPs.
» Larger CSPs <= smaller clones.

» So it makes sense to study Talyor algebras whose clones are as
small as possible.

» Definition
An algebra is a minimal Taylor algebra if it is Taylor, and has no
proper reduct which is Taylor.

» Proposition
Every finite Taylor algebra has a reduct which is a minimal Taylor
algebra.

» Proof.
There are only finitely many 4-ary terms t which satisfy
t(x,x,y,z) =~ t(y, z, z, x).

O
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First hints of a nice theory

» Theorem
If A is a minimal Taylor algebra, B € HSP(A), SC B, and t a

term of A satisfy
» S is closed under t,
» (S,t) is a Taylor algebra,
then S is a subalgebra of B, and is also a minimal Taylor algebra.
» Choose p a prime bigger than |A| and |S]|.
» Choose ¢ a p-ary cyclic term of A, u a p-ary cyclic term of
(S,1).
» Then

f = c(u(xi,x2, ..., Xp), (X2, X3, e X1 ), oo, U(Xp, X150y Xp—1))

is a cyclic term of A.
» Have f|s = u|s by idempotence.
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For A minimal Taylor, a,b € A, then {a, b} is a majority
subalgebra of A iff

» Proposition

a b a b a b b a
a b| €Sgy3x2 a b|,|b a|,|a b
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A few consequences, ctd.

» Proposition

For A minimal Taylor, a,b € A, then {a, b} is a Z./2° subalgebra
of A iff

b a a b a b b a
b a| € Sgusx2 a b|,|b a|,|a b
b a b a a b a b
> If there is an automorphism of A which interchanges a, b,

then we only have to consider

SgA3 a,b,



Daisy Chain Terms

» It's difficult to write down explicit examples without nice
terms.



Daisy Chain Terms

» It's difficult to write down explicit examples without nice
terms.

» Choose a p-ary cyclic term c.



Daisy Chain Terms

» It's difficult to write down explicit examples without nice
terms.

» Choose a p-ary cyclic term c.

» For any a < §, can make a ternary term w(x, y, z) via:

W(X,y,2) = (X, e, X, ¥y ooy ¥y Zy oty Z).
S—— N~ N~

a p—2a a



Daisy Chain Terms

» It's difficult to write down explicit examples without nice
terms.

» Choose a p-ary cyclic term c.

» For any a < §, can make a ternary term w(x, y, z) via:
W(X,y,2) = (X, e, X, ¥y ooy ¥y Zy oty Z).
—— S ——
a p—2a a

» This satisfies

w(x, x,y) = w(y, x, x).
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» It's difficult to write down explicit examples without nice
terms.

v

Choose a p-ary cyclic term c.

v

For any a < &, can make a ternary term w(x, y, z) via:

W(X,y,2) = (X, e, X, ¥y ooy ¥y Zy oty Z).
S—— N~ N~

a p—2a a

v

This satisfies

w(x, x,y) = w(y, x, x).

v

Also have

W(X, ¥, X) = (X, eeey X, ¥y ey ¥y Xy ey X).
e e

a p—2a a
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Daisy Chain Terms, ctd.

» From a sequence

a,p—2a,p—2(p—2a),..

we get a sequence of ternary terms:

Wo(XaX,}/) ~ W()(_)’,X,X) ~ Wl(X7y7X)7

Wl(X7X7y) ~ Wl(.y7X7X) ~ WQ(X,)/,X),

> If pis large enough and a is close enough to g, then the
sequence can become arbitrarily long.

» Since there are only finitely many ternary functions in Clo(A),
we eventually get a cycle.
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What do they mean?

» How can daisy chain terms be useful to us?

» For a,b € A, define a binary relation D,, < A? by

c c a a b
D,p = [ ] s.t. |d| € Sgys al, b]|,
d c b a

> If [j € D,p and there is an automorphism interchanging a, b,

then {a, b} is a majority algebra.

» Proposition

If A has daisy chain terms and a, b € A, then if we consider D, as
a digraph, it must contain a directed cycle.
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Describing a minimal Taylor algebra

> If p= w;, g = wjy1 are any pair of adjacent daisy chain
terms, then they satisfy the system

p(x,x,y) = ply,x, x) = q(x,y, x),
q(x,x,y) = q(y, x, x).
» Thus p, g generate a Taylor clone, so Clo(A) = (p, q) if A is
minimal Taylor.

» In particular, the number of minimal Taylor clones on a set of
. 3
n elements is at most n?"" .

» Conjecture

Every minimal Taylor clone can be generated by a single ternary
function.
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Daisy chain terms in the basic algebras

» Proposition

If w; are daisy chain terms and A is a semilattice, then each w; is
the symmetric ternary semilattice operation on A.

» Proposition
If w; are daisy chain terms and A is a majority algebra, then each
w; is a majority operation on A.

» Proposition

If w; are daisy chain terms and A is affine, then there is a sequence
aj such that w; is given by

Wi(Xayaz) = ajx + (1 - 23,)y+ ajz,

with aj;1 =1 — 2a;.
If ag = 0, then wy is the Mal'cev operation x — y + z and w_1 is

. X+z
the operation *%*=.
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» Bulatov studies finite Taylor algebras via three types of edges:
semilattice, majority, and affine.

» In minimal Taylor algebras, we can define his edges more
simply.

» Definition
If A is minimal Taylor and a, b € A, then (a, b) is an edge if there
is a congruence 6 on Sg{a, b} s.t.

Sg{a, b}/

is isomorphic to either a two-element semilattice, a two element
majority algebra, or an affine algebra.
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» Theorem (Bulatov)

If A is minimal Taylor, then the associated graph is connected.

v

We can simplify the proof!

v

If A is a minimal counterexample:
» the hypergraph of proper subalgebras must be disconnected,
» A is generated by two elements a, b, and
» A has no proper congruences.

v

It's not hard to show there must be an automorphism
interchanging a, b.

v

Consider the binary relation D,p!
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Connectivity, ctd.

» Recall the definition of D,p:

c c a a b
D,p = [ ] s.t. |d| € Sgys al, b|,|a
d
c b| |a a
» Have [Z] € D,p, want to show that either j €D,y or Ais
affine. )

» The daisy chain terms give us ¢, d, e € A such that

o] |2 e

» If both Sg{a, d} and Sg{d, b} are proper subalgebras, then
the hypergraph of proper subalgebras is connected.

» Then we can show D, is subdirect, and the proof flows
naturally from here.
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Can we do better?

» Can we get rid of congruences in the definition of the edges?

» Proposition (Bulatov)

For every semilattice edge from a to b, there is a b’ in the
congruence class of b such that {a, b’} is a two element semilattice
algebra.

» Similar statements fail for majority edges and affine edges.

» There are minimal Taylor algebras A, B of size 4 which have
congruences 6§ such that:
» A/ is a two element majority algebra and B/6 is Z/22,
» each congruence class of @ is a copy of Z /2%,
» every proper subalgebra of A or B is contained in a congruence
class of 0,
A has a 3-edge term and B is Mal'cev,
0 is the center of A or B in the sense of commutator theory.

v

v
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A = ({a,b,c,d},g), where g is an idempotent ternary
symmetric operation.

» g commutes with the cyclic permutation o = (a b ¢ d) and
satisfies

o

o

a,

J\5)

0q
a

)

a

(
(
(

0q
aQ

)
)
)
)

Il
00 0w

a
a
a
b

g(a, b, c

» O corresponds to the partition {a, c},{b, d}.
» The algebra S = Sg,2{(a, b), (b, a)} has a congruence 1)
corresponding to the partition

sl Lo Lo 3 ALa o) B[]

such that S/ is isomorphic to Z/227.
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Evil algebra #2

» B = ({a, b,c,d},p), where p is a Mal'cev operation.

» p commutes with the permutations o = (a ¢)(b d) and

T=(ac).
» The polynomials +, = p(-, a,-), +» = p(-, b, -) define abelian
groups:
+.]a b c d  4p|a b c d
ala b c d a|b a d c
b |b ¢ d a b |la b ¢ d
c|lc d a b c|d c b a
d|d a b c d |c d a b

v

6 corresponds to the partition {a, c}, {b, d}.

v

The algebra S = Sgp2{(a, b), (b, a)} has a congruence 1) such
that S/4 is isomorphic to Z /427
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Zhuk’s four cases

» Theorem (Zhuk)
If A is minimal Taylor, then at least one of the following holds:

> A has a proper binary absorbing subalgebra,

A has a proper “center”,

A has a nontrivial affine quotient, or

A has a nontrivial polynomially complete quotient.

v vy

» Definition
C < A is a center of A if there exist

> a binary-absorption-free Taylor algebra B and
» a subdirect relation R <,y A x B, such that

> C:{ceAs.t. Vb € B, [Z} ER}.

» Theorem (Zhuk)
If C is a center of A, then C is a ternary absorbing subalgebra of A.



Centers and Daisy Chain terms

Theorem

If A is minimal Taylor and M € HSP(A) is the two element
majority algebra on the domain {0, 1}, then the following are
equivalent:

» C is a ternary absorbing subalgebra of A,

> there is a p-ary cyclic term ¢ of A such that whenever
#{x; € C} > 5, we have

c(x,...,xp) € C,
» the binary relation R C A x M given by
R=(Ax{0})u(Cx{0,1})

is a subalgebra of A x M,

> every daisy chain term w;(x,y, z) witnesses the fact that C
ternary absorbs A.



Centers produce majority quotients

» If C,ID are centers, then for any daisy chain terms w;, we
must have
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Centers produce majority quotients

> If C,ID are centers, then for any daisy chain terms w;, we
must have

w;(C,C,D), w;(C,D,C), w;(D,C,C) C C

and
W,'((C7 ]D), ID)), W,'(D, C, D), W,'(]D), ]D), (C) - ]D),

so CUD is a subalgebra of A.
» If CN'D = (), then the equivalence relation 8 on C UD with

parts C, D is preserved by each daisy chain term w;, and
(CuD)/0 is a two element majority algebra.



Binary

absorption is strong absorption

Theorem

If A
>

>

is minimal Taylor, then the following are equivalent:
B binary absorbs A,

there exists a cyclic term c such that if any x; € B, then
c(x1,..., xp) €B,

the ternary relation

R={(xy,2) st (x £B) = (y = 2)}

is a subalgebra of A3,

every term f of A which depends on all its inputs is such that
if any x; € B, then f(x,...,xn) € B.
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Minimal Taylor algebras generated by two elements

» Theorem
If A is minimal Taylor and A = Sg{a, b}, then the following are
equivalent:

» B binary absorbs A,
» A =BU {a, b} and there is a congruence § such that B is a
congruence class of 0, and A /0 is a semilattice.

» Theorem
If A is minimal Taylor and A = Sg{a, b}, then A is not
polynomially complete.

> Minimal Taylor algebras generated by two elements are nicer
than general minimal Taylor algebras.

» It's good enough to understand such algebras.
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contained in a proper ternary absorbing subalgebra of A.
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Big conjecture

» Conjecture
Suppose A is minimal Taylor, generated by two elements a, b, and
has no affine or semilattice quotient. Then each of a, b is
contained in a proper ternary absorbing subalgebra of A.

» Proposition
Suppose the conjecture holds. Then any daisy chain term w; which
is nontrivial on every affine algebra in HS(A) generates Clo(A). In
particular, Clo(A) is generated by a single ternary term.

» Theorem (Kearnes, Szendrei)
Suppose a minimal Taylor algebra has no semilattice edges and has
its clone generated by a single ternary term. Then it has a 3-edge
term.



Thank you for your attention.



