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Abstract

An (n, k) multigrade is defined to be a pair of sets of n numbers
that have equal sums, sums of squares, and so on up to kth powers.
The Prouhet-Tarry-Escott problem is to find integer multigrades with
n = k + 1 (called ideal multigrades). For k ≤ 7, parametric solutions
have been found to the multigrade problem. We attempt to find more
parametric solutions by finding curves contained in the set of trivial
solutions (i.e., both sets are the same), and deforming them out and
into the nontrivial solutions.

1 The problem

An (n, k) multigrade is defined as a pair of distinct sets of integers

(a1, ..., an; b1, ..., bn)

such that
n∑

i=1

aj
i =

n∑
i=1

bji

for all positive integers j ≤ k.
A solution is said to be ideal when n = k + 1, since it is easy to see

that when n = k the only solutions are trivial. The Tarry-Escott-Prouhet
Problem is to prove (or disprove) that there is an ideal multigrade of degree
k for every k.

Multigrades arise in a variety of situations: for instance, a polynomial
of the form

n∑
i=1

xai −
n∑

i=1

xbi
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is a multiple of (x − 1)k if and only if the ais and bis form a degree k
multigrade. They also had applications to estimating logarithms before
modern computers [1], and more recently there have been applications in
construcing differences of sums of square roots that are very close to 0,
shedding light on the types of root seperation bounds that are possible [2].

Parametric solutions to the multigrade problem have been found for
k = 1, ..., 7, and an elliptic curve of solutions to the k = 9 case was found by
Letac in the 1940s. There are also several known solutions to the k = 8 and
k = 11 cases. Chen Shuwen has collected most of the known results online
in his webpage [3]. Our goal is to find parametric solutions for larger k.

2 Approach

Let X be the variety of ideal multigrades of degree k (in other words, the
multigrades for which n, the number of variables in each set, is k + 1). We
identify a hyperplane of trivial multigrades with Pk. Let C be any curve
contained in that hyperplane. Then we have the inclusions

C ⊂ Pk ⊂ X ⊂ P2n−1,

and if we let R be the ring Q[x0, ..., xk, y0, ..., xk], I be the ideal of C in R,
H the ideal of the hyperplane of trivial solutions, and J be the ideal of X,
we have the reverse inclusions

R ⊃ I ⊃ H ⊃ J.

We want to study the deformations of C. According to [4], the space
of first order deformations can be identified with the global sections of the
normal sheaf to C. For the deformations that remain in Pk, the normal
sheaf is NC/Pk = ˜Hom(I/H,R/I), while for deformations that remain in

X the normal sheaf is NC/X = ˜Hom(I/J,R/I). Thus, if dimH0(NC/X) >
dimH0(NC/Pk), then the curve C has a nontrivial first order deformation.
Hopefully, this first order deformation could then be extended to a full de-
formation, finally giving us a nontrivial rational curve contained in X.

3 Results

If we restrict to the case where C is a rational curve defined by a homogenous
degree d map (s, t)→ (f0(s, t), ..., fk(s, t); f0(s, t), ..., fk(s, t)) (i.e., xi = yi =
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fi(s, t)), then as long as no two fi are identical, we will show that C has a
nontrivial first order deformation within the variety X if and only if

deg gcd
i

 ∏
a<b,a,b 6=i

(fa(s, t)− fb(s, t))

 ≥ dn(n− 3)
2

.

Thus, for n ≤ 3 all rational curves deform, while for n > 3 only special
curves can deform. One such curve is the line (s, t)→ (s+c0t, s+c1t, ..., s+
ckt; s+ c0t, ..., s+ ckt), where c0, ..., ck are arbitrary distinct constants. One
family of deformations is given by the family of lines

(s, t)→ (s+ a0t, ..., s+ akt; s+ b0t, ..., s+ bkt),

where (a0, ..., ak; b0, ..., bk) can be any multigrade - in other words, every
point of X has a line going through it. This has been known for quite some
time, though, and such curves are not seen as providing infinitely many
“genuinely different” solutions to the multigrade problem.

A second curve is the “rational normal curve” of degree k defined by
clearing denominators in the map (s, t) → ( 1

s+c0t , ...,
1

s+ckt ;
1

s+c0t , ...,
1

s+ckt)
for any distinct c0, ..., ck. The gcd from the left hand side of our condition
is

t
(n−1)(n−2)

2

∏
i

(s+ cit)
(n−2)(n−3)

2 ,

which has degree

(n− 1)(n− 2)
2

+ n
(n− 2)(n− 3)

2
= 1 + k

n(n− 3)
2

,

so such a curve always has nontrivial first order deformations! In fact, if
we choose ci = i then we can explicitly calculate a nontrivial second order
deformation, given by clearing denominators in the equations:

xi =
1

s+ it
+ ε

∑
j

(−1)i+j(i− j)k−1

(
k

i

)(
k

j

)
1

s+ jt


yi =

1
s+ it

− ε

∑
j

(−1)i+j(i− j)k−1

(
k

i

)(
k

j

)
1

s+ jt


Unfortunately, there is no guarantee that this curve can be deformed

“all the way.” We would be able to guarantee this if the relative Hilbert
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scheme of curves contained in X was smooth at C, but unfortunately this is
impossible for n > 3 - if it was smooth, then the dimension of the tangent
space would not decrease as we deformed C into a nonspecial trivial curve,
which is a contradiction, since such a curve has no nontrivial deformations.

4 Calculations

We can think of C as a curve in Q[x0, ..., xk] by forgetting about the y
coordinates in our trivial hyperplane. Then we get an alternate ideal I ′ ≈
I/H describing C, and the ideal I is the direct sum of H and I ′. Thus,

˜Hom(I/J,R/I) = ˜Hom((I ′ ⊕H)/J,R/I)

= ˜Hom(I/H,R/I)⊕ ˜Hom(H/J,R/I),

so if dimH0( ˜Hom(H/J,R/I)) > 0 then our curve has first order deforma-
tions. From now on, we make the assumption that the curve C we are
working with is a rational curve abstractly isomorphic to P1. Then the ring
R/I will be a PID, so Hom(−, R/I) will be finitely generated and torsion

free, and thus free. Thus, ˜Hom(H/J,R/I) is a locally free sheaf on C.
By a theorem of Grothendieck, any locally free sheaf on P1 can be written
as a direct sum of twisted structure sheafs - in this case, ˜Hom(H/J,R/I)
has rank one, so it must be isomorphic to OC(l), where l is the degree of

˜Hom(H/J,R/I) = NC/X/NC/Pk . Thus, C will have nontrivial first order
deformations iff l ≥ 0.

In order to compute the degree l, we will need to use properties of the
cotangent complex. I will follow the notation of Lichtenbaum and Sch-
lessinger [5], in which it is proven that for any map of schemes Z → Y → X
and any sheaf F there is a long exact sequence

0→T 0(Z/Y,F)→ T 0(Z/X,F)→ T 0(Y/X,F) (1)

→T 1(Z/Y,F)→ T 1(Z/X,F)→ T 1(Y/X,F)

If we apply this to the sequence of schemes C → X → Spec Q and the
sheaf OC , we get a short exact sequence of sheaves on C:

0→ 0→ TC → TX ⊗OC → NC/X → 0

Here, T 0(C/X,OC) is 0 since the map C → X is an embedding, and
T 1(C/Spec Q,OC) is 0 since C is a nonsingular curve. If we take the similar
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short exact sequence corresponding to the sequence of schemes C → Pk →
Spec Q, then we get an exact commutative diagram:

0 // TC // TPk ⊗OC
//

��

NC/Pk //

��

0

0 // TC // TX ⊗OC
//

��

NC/X //

��

0

0 // TX/TPk
// NC/X/NC/Pk // 0

The last row is exact by the Snake Lemma. We want to compute the
degree of the sheaf on the bottom right. Since degrees are additive along
exact sequences, this means that we only have to compute the degrees of
TX ⊗ OC and TPk ⊗ OC to compute l. To compute the latter, we use the
exact sequence

0→ OPk → OPk(1)n → TPk → 0

to get deg TPk ⊗OC = nd, where d is the degree of the curve C. To compute
the degree of TX ⊗ OC , we have to use the sequence (1) applied to the
sequence of schemes X → P2n−1 → Spec Q:

0→ TX ⊗OC → TP2n−1 ⊗OC → NX/P2n−1 ⊗OC → T 1(X/Spec Q,OC)→ 0.

Here T 1(X/Spec Q,OC) may be nonzero since C might pass through the
singular locus of X.

The ideal J defining X is generated by the differences of the first k
elementary symmetric functions of the xis and yis, which are algebraicly
independent (so X is a complete intersection). Thus, the graded module
J/J2 is free, with generators of degrees 1, ..., k, so J̃/J2 = OX(−1) ⊕ · · · ⊕
OX(−k). Taking the dual, we get NX/P2n−1 = Hom(J̃/J2,OX) = OX(1) ⊕
· · · ⊕ OX(k), so degNX/P2n−1 ⊗OC = dnk

2 .
We can also calculate that deg TP2n−1⊗OC = 2nd. Putting it all together,

we get the formula

l = −nd+ 2nd− dnk
2

+ deg T 1(X/Spec Q,OC)

= deg T 1(X/Spec Q,OC)− dn(n− 3)
2

.

According to Lemma (3.1.2) of [5], we can explicitly describe T 1(X/Spec Q,OC).
To be as explicit as possible, we will assume the C is given by a degree d
map (s, t)→ (f0(s, t), f1(s, t), ..., fk(s, t); f0(s, t), ..., fk(s, t)) to P2n−1. Then
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T 1(X/Spec Q,OC) is the cokernel of the map from Hom(ΩP2n−1 ,OC) to
Hom(J̃/J2,OC) = NX/P2n−1 ⊗ OC , where the map is left multiplication by
the Jacobian matrix of the generators of J , with all the entries substituted
for the functions fi(s, t). Explicitly, this matrix is given by the Vandermonde
matrix


1 . . . 1 1 . . . 1

2f0(s, t) . . . 2fk(s, t) 2f0(s, t) . . . 2fk(s, t)
...

. . .
...

...
. . .

...
kfk−1

0 (s, t) . . . kfk−1
k (s, t) kfk−1

0 (s, t) . . . kfk−1
k (s, t)


At this point we have to make the assumption that no two fis are iden-

tical, so the image of this map has full rank within NX/P2n−1 ⊗OC , making
the cokernel of this map a torsion sheaf. The degree of a torsion sheaf F is
given in page 149 of Hartshorne [6] as∑

P∈C

length(FP ),

so we just have to compute this length at the various points P of C. In order
to accomplish this, it is useful to put our matrix in Smith Normal Form,
giving us a matrix 

a1 0 . . . 0 . . . 0
0 a2 . . . 0 . . . 0
...

...
. . .

...
. . .

...
0 0 . . . ak . . . 0


To compute the length of FP at a point P with coordinates (a, b), we can

localize the elements of this matrix by the ideal (bs− at) so that the matrix
simply multiplies each coordinate by a unit times a power of (bs−at). Then
the length of the cokernel of the localized matrix is obviously just the total
power of (bs− at) occuring among the ais. Summing over all points P , we
see that the degree of F is equal to the degree of the polynomial a1a2 · · · ak.

There is a way to calculate a1a2 · · · ak without calculating the Smith Nor-
mal Form of our matrix - note that a1a2 · · · ak is the gcd of the determinants
of all k by k submatrices of our matrix formed by deleting n + 1 columns.
Since this gcd remains unchanged by elementary row and column operations
on our matrix, this means we can calculate this gcd on our original matrix to
get the same result. Since our original matrix was a Vandermonde matrix,

6



the determinant of the submatrix formed by selecting columns i1, ..., ik is
just ∏

a<b

(fia − fib).

Thus, we have proved the following theorem:

Theorem 1. For any rational curve C defined as the image of a degree
d map (s, t) → (f0(s, t), ..., fk(s, t); f0(s, t), ..., fk(s, t)), fi 6= fj, C has a
nontrivial first order deformation within the variety X if and only if

deg gcd
i

 ∏
a<b,a,b 6=i

(fa(s, t)− fb(s, t))

 ≥ dn(n− 3)
2

.
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