Simplifying clones with partial semilattice
operations

Zarathustra Brady

Unary iteration

» Suppose f : A— A, |A| < 0.

Unary iteration

» Suppose f : A— A, |A| < 0.

> Write °"(x) for

Unary iteration

» Suppose f : A— A, |A| < 0.

> Write °"(x) for

Proposition
There is some m dividing lcm{1,2, ..., |A|} such that

£om(x) ~ £2m(x)

for all k > 1.

Unary iteration, continued
Definition
For f : A— A, |A] < oo, define f°>° by

Fo(x) = lim £ (x).

n—o0

Unary iteration, continued
Definition
For f : A— A, |A] < oo, define f°>° by
[ele%e} . on!
fo0(x) = nIl_}rr;of (x).
» For any f, f° satisfies

£ (£9°(x)) ~ £2°(x).

Unary iteration, continued
Definition
For f : A— A, |A] < oo, define f°>° by
000 . on!
fo0(x) = n||_>n;0 £ (x).
» For any f, f° satisfies
FO(Fo(x)) ~ F°°(x).
> If e: A— A satisfies
e(e(x)) ~ e(x),

we say that e is compositionally idempotent.

Nice behavior of unary iteration

» The map f — f°* is compatible with homomorphisms:

(A.f) —— (B.g)

| |

(A, o) — (B,g°)

Nice behavior of unary iteration

» The map f — f°* is compatible with homomorphisms:

(A.f) —— (B.§g)

| |

(A, o) — (B,g°)

» Also compatible with finite products.

Nice behavior of unary iteration

» The map f — f°* is compatible with homomorphisms:

(A.f) —— (B.§g)

| |

(A, F) —— (B,g°>)
» Also compatible with finite products.

» As a bonus, f°°° can be computed from f in O(|A|) steps.

Using compositionally idempotent unary operations

» If e: A— Ais compositionally idempotent and f : A” — A,
set

fe(X1, ..., xn) = e(f(e(x1), ..., e(xn))).

Using compositionally idempotent unary operations

» If e: A— Ais compositionally idempotent and f : A” — A,
set

fe(X1, ..., xn) = e(f(e(x1), ..., e(xn))).
» Have f. € Clo(e, f) and

fo 1 e(A)" — e(A).

Using compositionally idempotent unary operations

» If e: A— Ais compositionally idempotent and f : A” — A,
set

fe(X1, ..., xn) = e(f(e(x1), ..., e(xn))).
» Have f. € Clo(e, f) and

fo 1 e(A)" — e(A).

> If
f(X17 ”'7Xn) ~ g(y17 ---7}/m),
then
fe(X1y oo Xn) = 8e(V1, oy Ym)-

Using compositionally idempotent unary operations

» If e: A— Ais compositionally idempotent and f : A” — A,
set

fe(X1, ..., xn) = e(f(e(x1), ..., e(xn))).
» Have f. € Clo(e, f) and

fo 1 e(A)" — e(A).

f(X17 ”'7Xn) ~ g(y17 ---7}/m),
then
fe(X1y oo Xn) = 8e(V1, oy Ym)-

» The map f — f preserves identities of height at most one,
and shrinks the domain.

Reduction to cores

> |If we are studying identities of height one, we can replace A by

A = (e(A), {fe}fECIo(A))

for any e € Cloj(A) which is compositionally idempotent.

Reduction to cores

> |If we are studying identities of height one, we can replace A by

A = (e(A), {fe}fECIo(A))

for any e € Cloj(A) which is compositionally idempotent.

» Eventually, we reduce to the case where
fo(x) ~ x

for all f € Clo1(A).

Reduction to cores

> |If we are studying identities of height one, we can replace A by

A = (e(A), {fe}fECIo(A))

for any e € Cloj(A) which is compositionally idempotent.

» Eventually, we reduce to the case where
fo(x) ~ x

for all f € Clo1(A).
» In this case, Cloj(A) must be a group!

Reduction to idempotent algebras
» If Clo1(A) is a group, then f € Clo(A) can be decomposed:
f(X17 '”7Xn) ~ fun(fid(xlv "‘7Xn))7

where
fun(x) = f(x,...,x)

is unary and invertible, and
fig(X1y ey Xn) == fl;,l(f(xl, ey Xn))

is idempotent.

Reduction to idempotent algebras

» If Clo1(A) is a group, then f € Clo(A) can be decomposed:

IC(X:[7 ...,Xn) ~ fun(fid(xlv "‘7Xn))7
where
fun(x) = f(x, ..., x)

is unary and invertible, and

fig(X1s ooy Xn) = Fo H(F (X1, ey Xn)
is idempotent.
> If
F(X1y ey Xn) = (Y1, ooy Ym),s
then
fig(X1s ooy Xn) 22 Gid (V15 -y Yim)-

Binary iteration: the goal

> We want to generalize this construction to binary operations.

Binary iteration: the goal

> We want to generalize this construction to binary operations.

» Starting from t : A> — A, we will construct s € Cloy(t)
satisfying

s(x;s(x,y)) = s(s(x,), x) = s(x, y).

Binary iteration: the goal

> We want to generalize this construction to binary operations.

» Starting from t : A> — A, we will construct s € Cloy(t)
satisfying

s(x;s(x,y)) = s(s(x,), x) = s(x, y).

> We call such an s a partial semilattice operation.

Binary iteration: the goal

> We want to generalize this construction to binary operations.

» Starting from t : A> — A, we will construct s € Cloy(t)
satisfying

s(x;s(x,y)) = s(s(x,), x) = s(x, y).

> We call such an s a partial semilattice operation.

> We will use partial semilattice operations s to simplify our
clones (while preserving some height one identities).

Binary iteration: the goal

> We want to generalize this construction to binary operations.

» Starting from t : A> — A, we will construct s € Cloy(t)
satisfying

s(x;s(x,y)) = s(s(x,), x) = s(x, y).

> We call such an s a partial semilattice operation.

> We will use partial semilattice operations s to simplify our
clones (while preserving some height one identities).

» When no further simplifications are possible, binary absorption
will have nice properties.

Binary iteration: the first step

» For t: A> — A, define t°2" by

togn(X,y) = t(Xa t(Xa T t(Xay) T
—

n

Binary iteration: the first step

» For t: A> — A, define t°2" by

t2"(x, y) = t(x, t(x, - t(x,y)---)).

n

> Define t°2%° by

t2?®(x,y) = lim t°2”!(x,y).

n—o00

Binary iteration: the first step

> For t : A> — A, define t°2" by

t2"(x, y) = t(x, t(x, - t(x,y)---)).

n

> Define t°2%° by

£2°(x,y) = lim £2"(x,y).

n—o00

> We automatically have

t72%°(x, t2°(x, y)) = t2F(x, y).

Binary iteration: Bulatov's clever idea

» Suppose f : A2 — A is idempotent and satisfies

f(x,f(x,y)) = f(x,y).

Binary iteration: Bulatov's clever idea
» Suppose f : A2 — A is idempotent and satisfies
fFx f(x,y)) = f(x,y)-
» Define u(x,y) by

u(x,y) = f(x, f(y,x)).

Binary iteration: Bulatov's clever idea
» Suppose f : A2 — A is idempotent and satisfies
F(x, f(x,y)) = f(x,y).
» Define u(x,y) by
u(x,y) = f(x, f(y,x)).

» Then
f(x, u(x,y)) = u(x,y),

Binary iteration: Bulatov's clever idea

» Suppose f : A2 — A is idempotent and satisfies
fFx f(x,y)) = f(x,y)-

» Define u(x,y) by
u(x,y) = f(x, f(y,x)).

» Then
f(x, u(x,y)) = u(x,y),

u(u(x,y),x) = f(u(x, y), f(x, u(x, y)))

~ f(u(x,y), u(x,y))
~ u(x,y).

Binary iteration: a minor miracle
» Suppose u : A2 — A satisfies

u(u(x,y),x) = u(x,y).

Binary iteration: a minor miracle
» Suppose u : A2 — A satisfies

u(u(x, y),x) = u(x,y).
» Define s(x,y) by

s(x,y) = u=>(x,y).

Binary iteration: a minor miracle
» Suppose u : A2 — A satisfies
u(u(x, y),x) = u(x,y).
» Define s(x,y) by

0200(

s(x,y) =u X, y).

» For all n, we have

w2 (u(x,), x) = u(x, y)-

Binary iteration: a minor miracle
» Suppose u : A2 — A satisfies
u(u(x, y),x) = u(x,y).
» Define s(x,y) by

0200(

s(x,y) =u X, y).

» For all n, we have
u®?"(u(x,y),x) = u(x,y).
> Replacing y by u®2(""1(x,y), we get

u®"(u®"(x, y), x) = u"(x, y).

Binary iteration: a minor miracle
» Suppose u : A2 — A satisfies

ulu(x,), x) = u(x, y).
» Define s(x,y) by

0200(

s(x,y) =u X, y).

» For all n, we have
u®"(u(x, y), x) = u(x, y).
> Replacing y by u®2(""1(x,y), we get
u*(u™"(x, y), x) = u®"(x, y).
» Taking the limit, we get

s(s(x,y),x) = s(x, y) =~ s(x,s(x,y)).

Binary iteration: putting it all together

» Our full construction is given by

fxy) = t2%(x,y),
u(x,y) = f(x, £y, x)),
s(x,y) = u”**(x, y).

Binary iteration: putting it all together

» Our full construction is given by

fxy) = t2%(x,y),
u(x,y) = f(x, £y, x)),
s(x,y) = u”**(x, y).

> More compactly:

s = 921y, £°2%°(mp, 1)) 2.

Nice behavior of binary iteration

» Suppose t; — s; by the procedure on the previous slide.

Nice behavior of binary iteration

» Suppose t; — s; by the procedure on the previous slide.

» The construction is compatible with homomorphisms:

(A1, 1) —— (Az, tp)

! !

(A1,51) —— (A2, %)

Nice behavior of binary iteration

» Suppose t; — s; by the procedure on the previous slide.

» The construction is compatible with homomorphisms:

(A1, 1) —— (Az, tp)

! !

(A1,51) —— (A2, %)

> Also compatible with finite products.

Nice behavior of binary iteration

» Suppose t; — s; by the procedure on the previous slide.

» The construction is compatible with homomorphisms:

(A1, 1) —— (Az, tp)

! !

(A1,51) —— (A2,)
> Also compatible with finite products.

» As a bonus, s; can be computed from t; in time O(|A;|?).

Compatibility with binary absorption

» Suppose t : A> — A satisfies
€(C, B),t(B,C) C C

for some C C B C A.

Compatibility with binary absorption
» Suppose t : A> — A satisfies
€(C, B),t(B,C) C C

for some C C B C A.
> We say that C absorbs B with respect to t.

Compatibility with binary absorption
» Suppose t : A> — A satisfies

t(C,B),t(B,C)C C

for some C C B C A.
> We say that C absorbs B with respect to t.

» If t — s by our binary iteration procedure, then

s(C,B),s(B,C) C C.

Compatibility with binary absorption

» Suppose t : A> — A satisfies
€(C, B),t(B,C) C C

for some C C B C A.
> We say that C absorbs B with respect to t.

» If t — s by our binary iteration procedure, then
s(C,B),s(B,C) C C.

» If B £ C, then s must be nontrivial.

Compatibility with binary absorption

» Suppose t : A> — A satisfies
€(C, B),t(B,C) C C

for some C C B C A.
> We say that C absorbs B with respect to t.

» If t — s by our binary iteration procedure, then
s(C,B),s(B,C) C C.

» If B £ C, then s must be nontrivial.

» In particular,

t(a,b) = t(b,a)=b = s(a,b)=s(b,a)=b.

Meaning of the partial semilattice identities

» The s we constructed satisfies the identities

s(x;s(x,y)) = s(s(x,y),x) = s(x, y).

Meaning of the partial semilattice identities

» The s we constructed satisfies the identities
s(x,s(x,y)) =~ s(s(x, y), x) = s(x,).
> Together with idempotence, these are equivalent to

({x;s(x,¥)}:)

being a semilattice with absorbing element s(x, y).

Meaning of the partial semilattice identities

» The s we constructed satisfies the identities
s(x,s(x,y)) =~ s(s(x, y), x) = s(x,).
> Together with idempotence, these are equivalent to
({x,s(x,¥)}.s)

being a semilattice with absorbing element s(x, y).

» Write a —s b when
({a, b},s)

is a semilattice with absorbing element b.

Meaning of the partial semilattice identities
» The s we constructed satisfies the identities
s(x,s(x,y)) = s(s(x,y), x) = s(x, y).

> Together with idempotence, these are equivalent to

({x;s(x,¥)}:)

being a semilattice with absorbing element s(x, y).

» Write a —s b when
({a, b},s)
is a semilattice with absorbing element b.
> We have

a—sb <= s(ab)=0>b
< dcst s(a,c)=b.

Simplifying clones: the goal

» Suppose a —s b. We would like:

Simplifying clones: the goal

» Suppose a —s b. We would like:
» {a, b} to be a subalgebra of A, and

Simplifying clones: the goal

» Suppose a —s b. We would like:

» {a, b} to be a subalgebra of A, and
> this subalgebra to be term equivalent to ({a, b}, s).

Simplifying clones: the goal

» Suppose a —s b. We would like:

» {a, b} to be a subalgebra of A, and
> this subalgebra to be term equivalent to ({a, b}, s).

» We want to find a reduct of A which satisfies the properties
above, which preserves the height one identities satisfied by
A.

Simplifying clones: the goal

» Suppose a —s b. We would like:

» {a, b} to be a subalgebra of A, and
> this subalgebra to be term equivalent to ({a, b}, s).

» We want to find a reduct of A which satisfies the properties

above, which preserves the height one identities satisfied by
A.

P [t isn't possible to preserve all height one identities: they must
be compatible with semilattices.

Two-variable height-one identities
» For every n > 2, define s, : A" — A by

Sn(X1y ooy Xn) = S(Sp—1(X1, sy Xn—1), S(X1, Xn))-

Two-variable height-one identities
» For every n > 2, define s, : A" — A by

Sn(X1y ooy Xn) = S(Sp—1(X1, sy Xn—1), S(X1, Xn))-
» If x; = x and {x1,...,xa} = {x,y}, then

Sn(X1, ey Xn) = s(x, y).

Two-variable height-one identities
» For every n > 2, define s, : A” — A by

Sn(X1y ooy Xn) = S(Sp—1(X1, sy Xn—1), S(X1, Xn))-
» If x; = x and {x1,...,xa} = {x,y}, then
Sn(X1, ..oy Xn) = s(x, y).
> For f: A" — A, define f5 by

fo(X1,y ooy Xn) = F(S(X1y ooy Xn), S(X2, vy Xny X1)y vvy S(Xn, X1,

veey X,,_l)).

Two-variable height-one identities
» For every n > 2, define s, : A” — A by

Sn(X1y ooy Xn) = S(Sp—1(X1, sy Xn—1), S(X1, Xn))-
» If x; = x and {x1,...,xa} = {x,y}, then
Sn(X1, ..oy Xn) = s(x, y).
> For f: A" — A, define f5 by
fo(X1y ooy Xn) = F(S(X1y ooy Xn), S(X2, ooy Xy X1)y vvy S(Xny X1y vey Xn—1))-

> |If
f(Xt,y ey Xn) = 8(V1y ey Ym)

and {x1, ... xn} = {y1, -, ¥ym} = {x,y}, then

fo(X15 s Xn) = 8s(¥1, -0, Ym)-

Two-variable height-one identities, continued

» Define Ag by
As = (A {fs}recioa))-

Two-variable height-one identities, continued

» Define Ag by
As = (A {fs}recioa))-
» If a — b, then {a, b} is a subalgebra of A, term equivalent

to ({a, b}, s).

Two-variable height-one identities, continued

» Define Ag by
As = (A {fs}recioa))-
» If a — b, then {a, b} is a subalgebra of A, term equivalent

to ({a, b}, s).

» Every system of two-variable height-one identities with both
variables occuring on each side which is satisfied in A is also
satisfied in As.

Two-variable height-one identities, continued

» Define Ag by
As = (A {fs}recioa))-

» If a — b, then {a, b} is a subalgebra of A, term equivalent

to ({a, b}, s).

» Every system of two-variable height-one identities with both
variables occuring on each side which is satisfied in A is also
satisfied in As.

» In particular:

Two-variable height-one identities, continued

» Define Ag by
As = (A {fs}recioa))-

» If a — b, then {a, b} is a subalgebra of A, term equivalent

to ({a, b}, s).

» Every system of two-variable height-one identities with both
variables occuring on each side which is satisfied in A is also
satisfied in As.

» In particular:
» If A is Taylor, then A, is also Taylor.

Two-variable height-one identities, continued

» Define Ag by
As = (A {fs}recioa))-

» If a — b, then {a, b} is a subalgebra of A, term equivalent

to ({a, b}, s).

» Every system of two-variable height-one identities with both
variables occuring on each side which is satisfied in A is also
satisfied in As.

» In particular:

» If A is Taylor, then A, is also Taylor.
» If A has bounded width, then A, also has bounded width.

Symmetric operations

» An operation f : A” — A is symmetric if

f(Xla ”wa'l) = f(XO'(l)7 "'7X0(n))'

for all permutations o € S,,.

Symmetric operations

» An operation f : A” — A is symmetric if

f(X17 ”'7Xn) = f(XO'(l)7 "'7X0(n))'

for all permutations o € S,,.

» A has symmetric operations of every arity iff the Linear
Programming relaxation solves CSP(A).

Symmetric operations

» An operation f : A” — A is symmetric if

f(X17 ”'7Xn) = f(XO'(l)7 "'7X0(n))'

for all permutations o € S,,.

» A has symmetric operations of every arity iff the Linear
Programming relaxation solves CSP(A).

> If f, are a system of symmetric operations for each arity n,
write

f:(Xl, ...,X,,) = n!(Sn(Xol(l)a ...,Xgl(n)), veuy Sn(Xgn!(l), veuy Xa,,!(n)))-

Symmetric operations

» An operation f : A” — A is symmetric if

f(X17 ”'7Xf7) = f(Xo'(l)7 "'7X0(n))'

for all permutations o € S,,.

» A has symmetric operations of every arity iff the Linear
Programming relaxation solves CSP(A).

> If f, are a system of symmetric operations for each arity n,
write

f:(Xl, ...,X,,) = n!(Sn(Xol(l)a ...,Xgl(n)), veuy Sn(Xgn!(l), veuy Xa,,!(n)))-

» Each f? is symmetric, and if a =5 b then f; acts like s, on

{a, b}.

Totally symmetric operations

> An operation f : A" — A is totally symmetric if

{x1, s Xn} = {V1, s ¥nt = f(x1,.%0) = F(V1, ey Yn)-

Totally symmetric operations

> An operation f : A" — A is totally symmetric if

{x1, s Xn} = {V1, s ¥nt = f(x1,.%0) = F(V1, ey Yn)-

> A has totally symmetric operations of every arity iff Arc
Consistency solves CSP(A).

Totally symmetric operations

> An operation f : A" — A is totally symmetric if
{x1, s Xn} = {V1, s ¥nt = f(x1,.%0) = F(V1, ey Yn)-

> A has totally symmetric operations of every arity iff Arc
Consistency solves CSP(A).

Proposition

If A has totally symmetric operations f, of every arity n, then there
are totally symmetric operations f; € Clo(A) such that if a —s b
then f; acts like s, on {a, b}.

Analogue of idempotence

P> These constructions involved preprocessing the inputs to
functions f € Clo(A) by applying the operations s,,.

Analogue of idempotence

P> These constructions involved preprocessing the inputs to
functions f € Clo(A) by applying the operations s,,.

» | say that an algebra A has been prepared if
b a| |b
o] esse 3] [2)

{a, b}

is a subalgebra of A, term equivalent to a semilattice with
absorbing element b.

implies that

Analogue of idempotence

P> These constructions involved preprocessing the inputs to
functions f € Clo(A) by applying the operations s,,.

» | say that an algebra A has been prepared if
b a| |b
o] esse 3] [2)

{a, b}

is a subalgebra of A, term equivalent to a semilattice with
absorbing element b.

implies that

> If A is prepared, then we write a — b if the above holds.

Binary absorption and strong absorption

» Write B <ipin A (B binary absorbs A) if there is a binary term
t such that B absorbs A with respect to t.

Binary absorption and strong absorption

» Write B <ipin A (B binary absorbs A) if there is a binary term
t such that B absorbs A with respect to t.

> Write B <5, A (B strongly absorbs A) if for every f € Clo(A)
which depends on its first variable, we have

f(B,A,...,A) € B.

Binary absorption and strong absorption

» Write B <ipin A (B binary absorbs A) if there is a binary term
t such that B absorbs A with respect to t.

> Write B <5, A (B strongly absorbs A) if for every f € Clo(A)
which depends on its first variable, we have

f(B,A,.. A)eB.
> If A has any terms which depend on both variables, then

B<dsr A = B <pin A.

Binary absorption and strong absorption

>

Write B <ipin A (B binary absorbs A) if there is a binary term
t such that B absorbs A with respect to t.

Write B <5t A (B strongly absorbs A) if for every f € Clo(A)
which depends on its first variable, we have

f(B,A,.. A)eB.
If A has any terms which depend on both variables, then
B<gr A = B <pin A.
| say that A has been strongly prepared if

B <pin C — B <, C.

Binary absorption and strong absorption

>

Write B <ipin A (B binary absorbs A) if there is a binary term
t such that B absorbs A with respect to t.

Write B <5t A (B strongly absorbs A) if for every f € Clo(A)
which depends on its first variable, we have

f(B,A,.. A)eB.
If A has any terms which depend on both variables, then
B<gr A = B <pin A.
| say that A has been strongly prepared if
B<pinC = B<xC.

The previous constructions can be used to reduce to the case
where A is strongly prepared.

Transitivity of binary absorption?

» Suppose that B <1, A and C <1, B. Does it follow that
C <pin A?

Transitivity of binary absorption?

» Suppose that B <1, A and C <1, B. Does it follow that
C <pin A?

» In general, no:

({0,132, A, V),
({(0,0), (0, 1)}, A, V),
({(0, 1)}, A,).

A
B
C

Transitivity of binary absorption?

» Suppose that B <1, A and C <1, B. Does it follow that
C <pin A?

» In general, no:

A= ({0,1}2 A, V),
B= ({(07 0), (07 1)}7 N, \/),
C = ({(0,1)},A, V).

» Transitivity also fails for strong absorption:
{C} Tstr {b7 C} str {37 b, C}

in the idempotent commutative groupoid with ab=ac = b
and bc = c.

Useful lemma about absorption

Lemma
If A is prepared, and if B <1 A, then for any partial semilattice
operation s € Cloy(A) we have

s(B,A) CB.

Useful lemma about absorption

Lemma
If A is prepared, and if B <1 A, then for any partial semilattice
operation s € Cloy(A) we have

s(B,A) CB.

Proof.
If b€ B and s(b,a) & B, then {b,s(b,a)} is a subalgebra of A
which is not absorbed by {b} = BN {b,s(b,a)}.

Preparation fixes transitivity

Proposition
If A is prepared, and if C <lpjn B <lpin A, then C <pj, A.

Preparation fixes transitivity

Proposition
If A is prepared, and if C <lpjn B <lpin A, then C <pj, A.

Proof.

Choose a partial semilattice term s such that
s(B,C),s(C,B) C C,
and any t witnessing B <1y, A. Define u € Clo(s, t) by
u(x,y) = s(s(t(x, y),y), s(t(y, x), x)).

Then u witnesses C <lpj, A.

Preparation forces intersection

Proposition
If A is prepared, and if By < A, By <lpin A, then By N By # ().

Preparation forces intersection

Proposition
If A is prepared, and if By < A, By <lpin A, then By N By # ().

Proof.

Choose a partial semilattice term s such that
S(BZ7A)7 S(AvBZ) g]B27
and any b; € By, bp € B,. Then

S(bl, b2) € B1 N B,.

Nice criterion for binary absorption

Proposition
If A is prepared, and if s(B,A) C B for a partial semilattice
operation s, then TFAE:

Nice criterion for binary absorption

Proposition
If A is prepared, and if s(B,A) C B for a partial semilattice
operation s, then TFAE:

> B <pin A,

Nice criterion for binary absorption

Proposition
If A is prepared, and if s(B,A) C B for a partial semilattice
operation s, then TFAE:

> B <lpin A,

> forallac A\B and b € B, Sg,{a, b} has a proper binary
absorbing subalgebra,

Nice criterion for binary absorption

Proposition

If A is prepared, and if s(B,A) C B for a partial semilattice
operation s, then TFAE:

> B <lpin A,

> forallac A\B and b € B, Sg,{a, b} has a proper binary
absorbing subalgebra,

» forallac A\B and b € B, Sgy{a, b} contains a directed path

a=a —a—--—a, €B.

Nice criterion for binary absorption

Proposition

If A is prepared, and if s(B,A) C B for a partial semilattice
operation s, then TFAE:

> B <lpin A,

> forallac A\B and b € B, Sg,{a, b} has a proper binary
absorbing subalgebra,

» forallac A\B and b € B, Sgy{a, b} contains a directed path
a=a —a—--—a, €B.
» forallac A\B and b € B, there is some b’ € Sg,{a, b} such that

a— b eB.

Thank you for your attention.

