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Chapter 1

Introduction

One of the basic problems of sieve theory - and the problem that this thesis will be focused on -

may be phrased as follows. Let A be a set of integers, typically an interval, let P = {p1, ..., pk} be

a collection of primes, and let P be the product of the primes in P. Choose a congruence class ci

modulo each prime pi, and define the sifted set S(A,P, (ci)i=1,...,k) to be the collection integers in

the set A which are not congruent to any ci modulo the corresponding prime pi, that is,

S(A,P, (ci)i=1,...,k) = {a ∈ A | ∀i ≤ k, a 6≡ ci (mod pi)}.

Sometimes we write S(A,P) for the above when the ci are all 0, or when their values are irrelevant

to the argument.

Problem 1. Given A ⊂ N and P = {p1, ..., pk} a set of primes, what are the best possible upper

and lower bounds on |S(A,P, (ci)i=1,...,k)| if the congruence classes ci (mod pi) are unknown?

If P = Pz is the collection of all the primes below z, every ci is chosen to be 0 modulo pi, and

A is taken to be an interval with endpoints between between z and z2, then this gives upper and

lower bounds on the number of primes in A.

More generally, we may consider choosing several congruence classes modulo each prime, say κp

congruence classes modulo p - in this case, the average number of congruence classes to be chosen is

referred to as the sifting dimension, and we will call this average value κ. When the sifting dimension

κ is 2 and the congruence classes chosen modulo each prime pi are 0 and 2, we see that sufficiently

strong bounds for this problem might imply the twin prime conjecture.

Problem 2. Given A ⊂ N, and P = {κp1
·p1, ..., κpk ·pk} a weighted set of primes with weights κpi ,

what are the best possible upper and lower bounds on |S(A,P, (ci,j)i≤k,j≤κpi )| if the congruence

classes ci,j (mod pi) are unknown?

1



CHAPTER 1. INTRODUCTION 2

For simplicity, we will often focus on the case κ = 1, where we choose one congruence class

modulo each prime. In this case, by the Chinese Remainder Theorem we may replace the choice of

the congruence classes ci by an overall shift c modulo P , so that we want to find upper and lower

bounds on the size of the set S(A− c,P) of integers in A− c which are relatively prime to P .

In the rest of this section, I’ll describe several approaches towards solving this problem.

The linear approach

The most direct approach is to define a set Ad for every number d dividing P which consists of the

integers n in A such that d divides n−c, and to define a variable ad and to be the number of integers

n in A such that gcd(n− c, P ) = d. Then (in the case that A is an interval) we see what upper and

lower bounds on a1 = S(A− c,P) can be deduced from the collection of linear inequalities

|A|
d
− 1 ≤ |Ad| ≤

|A|
d

+ 1, |Ad| =
∑
d|k

ak, ak ≥ 0.

By summing these inequalities after multiplying them by certain carefully chosen sieve weights λd,

we can produce upper and lower bounds on |S(A− c,P)|. This approach may be viewed as a linear

relaxation of the original problem.

More generally, for any fixed value of κ, if we take |A| = zs, with s a constant greater than 1

and z going to infinity, we can ask for the asymptotically optimal bounds coming from the system

of linear inequalities ∣∣∣|Ad| − κ(d) |A|d

∣∣∣ ≤ κ(d), (1.1)

where κ(d) =
∏
p|d κp. Define sifting functions fκ(s), Fκ(s) by

(1 + o(1))fκ(s)|A|
∏
p<z

(
1− κp

p

)
≤ S(A,Pz) ≤ (1 + o(1))Fκ(s)|A|

∏
p<z

(
1− κp

p

)
,

with fκ(s) as large as possible (resp. Fκ(s) as small as possible) given that the above inequality

holds for all choices of weighted sets A satisfying (1.1). Selberg, in his Lectures on Sieves [28], has

shown the following.

Theorem 1 (Selberg [28]). The optimal sifting functions fκ(s), Fκ(s) continuous, monotone, and

computable for s > 1, and they tend to 1 exponentially as s goes to infinity.

What’s more, Selberg has outlined an algorithm to compute fκ(s), Fκ(s) to any desired accuracy

in [28]. Despite this, as far as I am aware no one has ever implemented this algorithm, and even

the value of Fκ(2) is unknown for any κ other than κ = 1
2 , 1 (although there are of course upper

bounds). I’ve described this algorithm in Chapter 6.
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There are two simple but effective methods for producing bounds on the sifting functions fκ, Fκ.

The first method, known as Buchstab iteration, is based on the identity

S(A,Pz) = S(A,Pw)−
∑

w≤p<z

S(Ap,Pp)

which holds for any w < z. Thus, given an upper bound for |S(A,Pw)| and lower bounds for

|S(Ap,Pp)|, we can find an upper bound for S(A,Pz). Iterating this strategy, one obtains the β-

sieve. The second basic method, the Selberg upper bound sieve, restricts attention to choices of

sieve weights λd such that there exist weights `d with

∑
d|k

λd = (
∑
d|k

`d)
2,

in order to make it easy to check that
∑
d|k λd ≥ 0. Although the resulting upper bound on Fκ(s) is

not always optimal (it is known that the β-sieve outperforms the Selberg sieve when s is very large,

and the β-sieve weights are not of this form), it is easy to compute the Selberg sieve bound, and this

bound appears to be nearly optimal when s is small and κ is large. When s = 2, Selberg’s upper

bound sieve gives the bound Fκ(2) ≤ eγκΓ(κ+ 1), where γ is the Euler-Mascheroni constant.

A good measure of the success of a sieve is whether it can prove nontrivial lower bounds for the

size of the set |S(A,Pz)|. The sifting limit βκ is defined by

βκ = inf{s | fκ(s) > 0},

and our goal is generally to show that the sifting limit is as small as possible. It is known that

β 1
2

= 1, β1 = 2, and that βκ < 2κ for 1
2 < κ < 1, and it seems to be the case that the value of βκ is

given by the β-sieve in this range. When κ is very large, the best known bound for βκ is given by

variants of Selberg’s lower bound sieve, the basic form of which is given by choosing λd such that

there exist weights `d with ∑
d|k

λd =
(
1−

∑
p|k

1
)(∑

d|k

`d
)2
,

and Selberg [28] gets the following bound.

Theorem 2 (Selberg [28]). βκ < 2κ+ 0.4454 for κ sufficiently large.

It is currently not known whether there is any κ > 1 with βκ < 2κ. Based on an analysis of a

simplified version of the sifting problem, described later, I’ve found an approach which seems likely

to prove a bound of the following form.

Conjecture 1. There is some ε > 0 such that βκ ≤ 2κ− ε 3
√
κ for all κ sufficiently large.

Selberg [28] has also suggested a refinement of the linear relaxation approach, in which we replace



1.1. JACOBSTHAL FUNCTION 4

the interval A with a weighted interval, such that the weights are a smooth approximation to the

indicator function of A. The idea is to take advantage of the fact that the Fourier transform of

a smooth function decays more quickly than the Fourier transform of a step function, ultimately

leading to better error terms in the analysis. We’ll explore this refinement in Section 3.2.2.

The Fourier transform approach

A second approach to the basic sifting problem, known as the large sieve (see Montgomery [25]),

involves studying the Fourier transform of the set S(A− c,P), considered as a subset of Z/PZ. One

shows that if this set is too large then the Fourier transform has many large values at a collection

of points α1, ..., αN ∈ R/Z, which are well spaced in the sense that the distance between any two

of them is at least δ for some δ > 0. One then shows that this contradicts an upper bound on the

operator norm of a matrix associated to the Fourier transform at these points. The relevant matrix

has the form NI +S, where I is the identity matrix and S is a symmetric matrix whose i, j entry is

Si,j =
sinπN(αi − αj)
sinπ(αi − αj)

when i 6= j, and with Si,i = 0. One version of the main result is the operator norm bound

‖S‖ ≤ 1

δ
.

Note that this bound is equivalent to the positive semidefiniteness of the matrices 1
δ I − S,

1
δ I + S.

Kobayashi [20] and Motohashi [26] have shown that one can combine the approaches of the

Selberg sieve and the large sieve, using the Selberg sieve to get a main term and the large sieve to

get a good bound on the error term.

1.1 Jacobsthal function

Definition 1. The Jacobsthal function j(m) is defined to be the minimum n such that among any

n consecutive integers, at least one of them is relatively prime to m.

We are mostly interested in j(Pz), where Pz is the product of the primes below z. The best

known asymptotic bounds on j(Pz) are summarized below.

Theorem 3 ([14], [7]). We have

z log(z) log(log(log(z)))

log(log(z))
� j(Pz)� z2.

Now we’ll go over some numerical computations. To simplify notation, we’ll follow Hagedorn [9]
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and define a function h(n) by

h(n) = j(p1 · · · pn),

where p1, ..., pn are the first n primes. Hagedorn [9] has computed the value of h(n) for n ≤ 49.

More recently, Ziller and Morack [33] have extended this computation to n ≤ 54.

The next table summarizes my own numerical bounds on h(n) a few values from [9] and [33] for

comparison. The upper bounds were computed by a branch-and-bound brute force search, while the

lower bounds were found by simulated annealing. All the computations were done on my laptop,

and I didn’t spend too much time trying to get good bounds.

n pn lower bound on h(n) upper bound on h(n)

45 197 642 642

50 229 762 762

55 257 860 980

60 281 874 1180

65 313 1002 1380

70 349 1070 1630

75 379 1220 1880

100 541 1872 3350

150 863 3134 7900

200 1223 4208 15800

In Corollary 9, I prove the explicit bound

j(P1010) < 2 · 1018.

It seems plausible that if one pushed some of the numerical methods in this thesis to their limits,

one might be able to prove that for all sufficiently large z we have j(Pz) ≤ z2

100 . This sort of bound

has a connection with Dirichlet’s theorem on primes in progressions.

Proposition 1. Suppose that for some constant C we have j(Pz) ≤ z2

C for all sufficiently large z.

Then for any a, b ∈ N with gcd(a, b) = 1 and a < C, the arithmetic progression {an + b | n ∈ N}
contains infinitely many primes.

Proof. Let z be large, and write P ′z = Pz/ gcd(a, Pz). Since by definition of Pz we have gcd(a, P ′z) =

1, there exists a ∈ Z such that aa ≡ 1 (mod P ′z). Then for an+ b ∈ [z, z2), we have an+ b prime if

and only if gcd(n + ab, P ′z) = 1 (since no prime dividing a can divide an + b). So we just need to

show that there is at least one n ∈ [(z− b)/a, (z2− b)/a) with gcd(n+ ab, P ′z) = 1. This will be true

so long as we have

j(P ′z) <
z2 − b
a
− z − b

a
=
z(z − 1)

a
.



1.2. SIMPLE WAYS TO CONSTRUCT SIEVES 6

Since j(P ′z) ≤ j(Pz) ≤ z2

C , for sufficiently large z this will follow from a < C.

Along these lines, the following explicit bound of Linnik is known.

Theorem 4 (Linnik’s Theorem [21], [22], [11], [32]). There exists a constant L such that for any

a, b ∈ N with gcd(a, b) = 1 and b < a, the arithmetic progression an + b contains a prime p with

p� aL.

The smallest possible choice for L in Linnik’s Theorem is known as Linnik’s constant, and the

current best bound for L is L ≤ 5, due to Xylouris [32]. The connection with the Jacobsthal function

is as follows.

Proposition 2 (Kanold [17], [18], [30]). If j(Pz)� z2−ε, then Linnik’s constant L is at most 2
ε .

Since the fact that Linnik’s constant is finite seems to be rather deep (relying on results about

Siegel zeros), it seems unlikely that one may easily show a bound like j(Pz)� z2−ε. However, there

is no reason to expect it to be impossible to show a bound like j(Pz)� z2

log(z) . Such a bound would

give a new type of proof of Dirichlet’s theorem on primes in progressions.

1.2 Simple ways to construct sieves

The simplest sieves are the combinatorial sieves. They are based on the following result.

Proposition 3. Suppose that λd satisfy λ1 = 1, and for any d | Pz and any prime p < z which is

smaller than all the prime factors of d we have

λd + λpd ≤ 0. (C)

Then

S(A, z) ≥
∑
d|Pz

λd|Ad|.

Similarly, if for all such d, p we have λd + λpd ≥ 0, then S(A, z) ≤
∑
d|Pz λd|Ad|.

Proof. We just need to show that for any n | Pz with n 6= 1, we have

∑
d|n

λd ≤ 0.

Let p be the least prime dividing n. Then by (C), we have

∑
d|n

λd =
∑
d|n/p

λd + λpd ≤ 0.

The upper-bound case is similar.
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Definition 2. Any collection of sieve weights λd satisfying the assumptions of Proposition 3 is called

a combinatorial sieve.

Combinatorial sieves are closely connected to Buchstab iteration, which is based on repeated

applications of the following identity.

Proposition 4 (Buchstab’s identity). For w ≤ z we have

S(A, z) = S(A,w)−
∑

w≤p<z

S(Ap, p).

Another simple type of sieve is the Selberg upper bound sieve.

Proposition 5. Let `d be any collection of real numbers with `1 = 1. Then

S(A, z) ≤
∑

d1,d2|Pz

`d1`d2 |A[d1,d2]|,

where [d1, d2] is the least common multiple of d1 and d2.

Proof. We just have to show that for any n | Pz, we have

∑
[d1,d2]|n

`d1
`d2
≥ 0.

This follows from the fact that the left hand side is equal to(∑
d|n

`d

)2

,

which is clearly at least 0.

Finally, I’ll describe a simple way to construct iteration rules which are useful for improving the

bounds in sieves of higher dimension.

Proposition 6. Let λ0, ..., λn be real numbers with λ0 = 1, such that when we define the polynomial

θ(n) =
∑
k

λk

(
n

k

)

we have θ(n) ≤ 0 for n ∈ N+. Then for w ≤ z, we have

S(A, z) ≥ S(A,w) + λ1

∑
w≤p1<z

S(Ap1 , w) + · · ·+ λn
∑

w≤pn<···<p1<z

S(Ap1···pn , w).

Similarly, we have the reverse inequality if the λks are chosen such that θ(n) ≥ 0 for all n ∈ N.
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1.3 New approaches explored in this thesis

Approximation algorithm perspective

As a computational problem, determining whether there exists a shift c such that |S(A − c,P)| is

greater than a given value (given sets A and P as input) is in the complexity class NP, since we can

compute the size of |S(A− c,P)| quickly for any given value of c. As we will see in Chapter 2, this

problem is in fact NP-complete.

Determining the maximum and minimum values of |S(A− c,P)| can be viewed as a combinato-

rial optimization problem, and we can ask whether there are approximation algorithms which can

efficiently compute upper and lower bounds which have the right order of magnitude. For instance,

we can put this problem into the form of a zero-one linear programming problem as follows: for each

prime p ∈ P, and for each congruence class i modulo p, we can introduce a variable xp,i ∈ {0, 1}
which is 1 if we take c ≡ i (mod p) and 0 otherwise. Additionally, for each i ∈ A we introduce a

variable yi ∈ {0, 1} which is 1 if i− c is relatively prime to P . Then we have the linear constraints

p−1∑
i=0

xp,i = 1

for each p ∈ P, and

1−
∑
q∈P

xq,i ≤ yi ≤ 1− xp,i

for each i ∈ A and p ∈ P, and our goal is to either maximize or minimize the quantity
∑
i∈A yi. One

natural way to approach such problems is to find a tractable relaxation of the problem - that is, to

drop some of the constraints to produce a new problem which can be solved efficiently. In the case

of zero-one linear programming, a standard relaxation is the linear relaxation, in which we replace

the constraint that all the variables are in {0, 1} with the constraint that all the variables are in

[0, 1]. In this case, it is easy to see that the standard linear relaxation doesn’t buy us much when∑
p∈P

1
p gets large, so it is natural to introduce new variables xd,i for d dividing P with xd,i = 1

when i − c is a multiple of d. The linear relaxation hierarchies in the literature on zero-one linear

programming take an approach like this, in which one considers the collection of variables xd,i with

d having a bounded number of prime factors, but in this case we get better bounds by considering

the collection of variables xd,i with d bounded by a fixed power of |A|. Not only does this recover the

first approach to the basic sifting problem described above, including Selberg’s idea of smoothing the

interval before applying the sieve, it also introduces a new possibility: sieve weights which depend

on both the divisors of an element of A− c and on the relative position of that element within the

interval.

A more advanced relaxation deserves mention, although I won’t explore it in much detail in this

thesis. This is the semidefinite relaxation, in which instead of replacing our 0, 1 variables with real
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numbers in [0, 1], we replace them by vectors, and replace our constraints with linear constraints on

the sizes of the (squared) norms and dot products between these vectors. The semidefinite relaxation

is a general technique for constructing approximation algorithms to combinatorial optimization

problems which is conjectured to be best possible in the case of constraint satisfaction problems

(the conjecture is known to be true conditional on the Unique Games Conjecture, by a result of

Raghavendra [27]). Another way of describing semidefinite programming is that it finds the best

possible way to combine weighted sums of linear inequalities with the fact that certain matrices are

positive semidefinite in order to get bounds, using the fact that the space of positive semidefinite

matrices is convex. Since all known approaches to the basic sieve theory problem can be seen as

consequences of linear inequalities and the fact that certain matrices are positive semidefinite, the

corresponding semidefinite program unifies previous approaches and, with luck, might outperform

them.

Sieves built using iterations

I’ve been able to get improved bounds on the sifting functions fκ, Fκ when κ is slightly greater than

1 by using a new combinatorial method based on variations of Buchstab iteration. The simplest

example is an upper bound iteration.

Theorem 5. For w ≤ z, we have

S(A,Pz) ≤ S(A,Pw)− 2

3

∑
w≤p<z

S(Ap,Pw) +
1

3

∑
w≤q<p<z

S(Apq,Pw).

The proof of this boils down to the easy inequality 0 ≤ 1− 2
3k+ 1

3

(
k
2

)
= (1− k

2 )(1− k
3 ) for k ∈ N.

Such an inequality will not be produced using Selberg’s Λ2 upper bound sieve, for the simple reason

that the polynomial 1− 2
3k+ 1

3

(
k
2

)
can’t even be written as a positive linear combination of squares

of real valued polynomials, since it takes negative values when 2 < k < 3. There is a similar but

more complicated lower bound iteration rule based on the polynomial (1− k)(1− k
3 )(1− k

4 ), which

is ≤ 0 for k ∈ N+.

The nice thing about this iteration rule is that when the sifting dimension κ is 1, and when we

take w = |A|
z2 , then in the range 5

2 < s < 3 the upper bound this produces for F1(s) is actually

equal to F1(s), there is no loss. As we increase the dimension κ past 1, this iteration rule starts

to outperform Buchstab iteration, although the best choice for w changes with κ. It’s curious that

this iteration rule starts to break down at s = 5
2 - my suspicion is that a similar iteration rule exists

which works best in the range 7
3 < s < 5

2 , and that in fact an infinite sequence of such iteration

rules can be found, such that their limit describes an upper bound sieve which gives a better upper

bound for Fκ(2) than the Selberg sieve. Preliminary calculations indicate that the third iteration

rule in this sequence might already do the job.
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When the sifting dimension is slightly greater than 1, the current state of the art is obtained by

applying Buchstab iteration to the Selberg sieve, and is known as the Diamond-Halberstam-Richert

sieve (see [3]). Based on numerical calculations, when κ = 3
2 , the generalized sifting iteration

rule described above can be used to improve on the Diamond-Halberstam-Richert sieve by a small

amount. The more complicated lower bound iteration rule can then be used to improve on it further.

Selberg’s model problem.

A second approach, applicable to the case in which the sifting dimension κ is very large, is based on

a model problem of Selberg, described in [28], in which one assumes that all primes in P have the

roughly the same size (for instance, they might be in a dyadic interval). In this case, there are only

two important parameters: the first is

v =
∑
p∈P

κp
p
,

which behaves like the dimension κ in the usual sifting problem, and the second isR = minp∈Pb log |A|
log p c,

which behaves like the parameter s. Sieve weights now depend only on the number of prime factors

and not on the sizes of the prime factors, and a lower bound sieve now corresponds to a collection

of sieve weights λ0, ..., λR such that λ0 = 1 and such that the polynomial θ(n) given by

θ(n) =

R∑
i=0

λi

(
n

i

)

has θ(n) ≤ 0 for every strictly positive integer n. Our goal is to maximize the quantity

∑
n≥0

θ(n)
vn

n!
= ev

R∑
n=0

λn
vn

n!
.

In particular, we are interested in whether we can ever make this greater than 0. Thus we define vR

to be the largest value of v such that the above can be taken to be greater than 0.

Unexpectedly, one finds that when κ and R are both large, the asymptotic bounds we get on the

ratios R
vR

and βκ
κ using various sifting approaches in the model problem and in the standard sifting

problem are the same. For instance, the analogue of the β-sieve in the model problem is to take

λi = (−1)i for i ≤ 2bR−1
2 c+ 1, and using this sieve one gets the bound

lim sup
R→∞

R

vR
≤ c = 3.591...,

where c is defined by cec+1 = 1. This same constant shows up as the asymptotic upper bound for
βκ
κ which is derived from the β-sieve. The analogue of the Selberg lower bound sieve in the model

problem is given by taking θ(n) = (1 − n)p(n)2 for some polynomial p(n), and on choosing the
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optimal p(n) Selberg [28] gets the following bound.

Theorem 6 (Selberg [28]). With notation as above, we have

vR ≥ bR+1
2 c,

so lim supR→∞
R
vR
≤ 2.

Selberg raised the question of whether the Selberg lower bound sieve gives asymptotically optimal

results in this model problem as the sifting dimension goes to infinity. Recently, I found a simple proof

of this, based on bounding a quadratic form associated to polynomials of the form (1−n)p(n)p(n−1).

Theorem 7. In the case of the model problem, Selberg’s lower bound sieve is asymptotically optimal

as v and R go to infinity, that is,

lim
R→∞

R

vR
= 2.

More precisely, for R = 2d+ 1, we have vR ≤ (
√
d+ 1)2.

From this, one can improve a lower bound Selberg gave for the sifting limit βκ by a factor of 2.

Corollary 1. βκ ≥ (1 + o(1)) 2κ
e .

On the other hand, there are lower order improvements that can still be made to the Selberg

lower bound sieve in the model problem. A careful (and much more difficult) analysis shows that in

fact we have the following bound.

Theorem 8. vR ≥ R
2 + Ω( 3

√
R).

The corresponding sieve is approximately of the form

θ(n) = (1− n) ·
3
√
vR∏

i=1

(1− n
2i+1 )(1− n

2i+2 ) · p(n)2,

for some polynomial p(n) with p(0) = 1.

This suggests a strategy for finding a (lower order) improvement to the Selberg lower bound sieve

in the standard sifting problem, and I expect that this method should allow one to show that when

the sifting dimension is sufficiently high, the sifting limit βκ is strictly less than twice the sifting

dimension.



Chapter 2

Computational aspects of sieving

2.1 Shifted Sifting and Transverse Partition Cover

The following problem seems like a natural generalization of the Jacobsthal problem, and seems to

capture the spirit of the type of sieve theory I like.

Problem 3 (Shifted Sifting). Given a finite set A ⊂ Z and a finite set P of primes, determine if

there exists a constant c ∈ Z such that each element of A+ c is a multiple of at least one prime in

P.

In the case A is an interval, we recover the Jacobsthal problem. If A is the set of numbers of

the form n(n + 2) for n ∈ [z, z2 − 2] and P is the set of primes below z, then a negative answer to

this question (for infinitely many z) implies the twin prime conjecture (and in fact would be a much

stronger claim than the twin prime conjecture).

This is a decision problem, and since c can be assumed to be between 0 and
∏
p∈P p, the size of

a “witness” is polynomial in the size of the input, so this decision problem is in NP . In order to

prove NP -completeness, we first show that this is equivalent to a variant of set cover which has no

direct relationship to number theory.

Problem 4 (Transverse Partition Cover). Given a finite set A and a finite set P = {P1, ..., Pk} of

partitions of A, determine if there is a way to choose one part Ai of each partition Pi such that

A1 ∪ · · · ∪Ak = A.

Proposition 7. Every instance (A,P) of Shifted Sifting can be efficiently transformed to an equiv-

alent instance (A′,P ′) of Transverse Partition Cover such that |A| = |A′| and |P| = |P ′|, and

conversely every instance of Transverse Partition Cover can be efficiently transformed to an equiv-

alent instance of Shifted Sifting.

12
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Proof. Going from Shifted Sifting to Transverse Partition Cover is easy: we take A′ = A and replace

each prime p ∈ P with a corresponding partition P of A into congruence classes modulo p. For the

reverse direction, if (A′,P ′) is an instance of Transverse Partition Cover with P ′ = {P1, ..., Pk}, we

first choose P to be a set of k primes {p1, ..., pk} such that pi ≥ |Pi| for each i, and fix an injection

ιi : Pi → Z/pi. Next we enumerate the elements of A′ as a′1, ..., a
′
n, and for each i ≤ n we use a

constructive form of the Chinese Remainder Theorem to find an element ai ∈ Z such that ai 6= aj

for any j < i and such that for each j ≤ k if a′i ∈ Ai,j ∈ Pj then ai ≡ ιj(Ai,j) (mod pj). Finally we

take A = {a1, ..., an}.

2.1.1 Hardness proof

Now we’ll show that the Transverse Partition Cover problem is NP -complete by finding a reduction

from Set Cover. First we state the Set Cover problem.

Problem 5 (Set Cover). Given a finite universe S, a parameter k, and a collection S = {S1, ..., Sm}
of subsets of U , determine whether there is a subcollection C ⊆ S with |C| = k such that

⋃
Si∈C Si =

U .

Theorem 9. There is a polynomial time reduction from Set Cover to Transverse Partition Cover,

taking an instance (U, k, S) of Set Cover to an instance (A,P) of Transverse Partition Cover with

|A| = |U | + k|S|, |P| = k|S|, and each element of P having size k|S| + 1. In particular, both the

Shifted Sifting problem and the Transverse Partition Cover problem are NP -complete.

Proof. Let (U, k, S) be an instance of Set Cover with |S| = m. Assume without loss of generality

that U ∩ {1, ..., k|S|} = ∅ (otherwise, rename the elements of U). Take A = U ∪ {1, ..., k|S|}. Take

P = {Pi,Sj | i ≤ k, Sj ∈ S}, with Pi,Sj = {U \ Sj , {i} ∪ Sj , {1}, ..., {̂i}, ..., {k|S|}}, where {̂i} means

that {i} is omitted.

2.1.2 Fixed Parameter Tractability

One way to distinguish difficulty levels between NP -complete problems is to study parametrized

tractability, in which we fix some parameter k associated with each instance and study how the

difficulty level grows as k increases.

Definition 3. A parametrized problem is fixed parameter tractable if there is some function f and

some fixed integer d such that any instance of the problem with size n and parameter k can be

solved in time f(k)nd. The set of fixed parameter tractable problems is called FPT . If there is a

function f such that any instance with size n and parameter k can be solved in time nf(k), then we

say that our parametrized problem is in the class XP .
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There is a hierarchy of parametrized complexity classes between FPT and XP , called the W -

hierarchy:

FPT = W [0] ⊆W [1] ⊆W [2] ⊆ · · · ⊆W [P ] ⊆ XP.

The definitions of the complexity classes W [t] are somewhat technical, and can be found in [5] (an

attempt: W [t] consists of parametrized circuit-satisfiability problems in circuits having bounded

depth and having at most t gates of unbounded fan-in on any path from the inputs to the output,

in which the parameter k is the number of 1s in the desired solution). k-Vertex Cover, which asks

whether a graph has a subset of at most k vertices which meets every edge, is a standard example

of a problem in FPT . A standard example of a W [1]-hard (under FPT reductions) problem is

k-Clique.

One reason to believe that Transverse Partition Cover may be “easier” in some sense than Set

Cover is that, while k-Set Cover (where the parameter is the number of sets in our cover) is W [2]-

hard, Transverse Partition Cover is fixed-parameter tractable if the parameter is taken to be the

number of partitions.

Theorem 10. An instance (A,P) with P = {P1, ..., Pk} can be solved in time O((k!)2|A|).

Proof. Suppose that there is a choice of parts Ai ∈ Pi such that A1 ∪ · · · ∪ Ak = A. Then there

must be some i1 ≤ k such that |Ai1 | ≥ 1
k |A|. For each partition Pi, the number of parts of Pi

of size at least 1
k |A| as at most k. Thus the number of possible choices for any part Ai of any

partition Pi which has size at least 1
k |A| is at most k2. Searching over all possible choices for Ai1 ,

we reduce to at most k2 instances with k− 1 partitions, and by induction this can be solved in time

O(k2((k − 1)!)2|A|) = O((k!)2|A|).

There are other, slightly less natural choices of parameter we could make. If we take our parame-

ter to be |A|, then since the problem is trivial when |P| ≥ |A|, we see that it is again fixed-parameter

tractable. If instead we take the parameter to be the largest number of parts in any partition in

P, then it is no longer clear whether the problem is fixed-parameter tractable - but at least we can

show that it is in the complexity class XP .

Theorem 11. An instance (A,P) of Transverse Partition Cover such that each partition in P has

at most c parts can be solved in time O(|A|1+log(c)/ log( c
c−1 )).

Proof. Suppose that |P| = k. If ( c−1
c )k|A| < 1, then a greedy strategy covers A. Otherwise, we have

k ≤ log(|A|)
log( c

c−1 ) , so a brute force search can be carried out in time proportional to

ck|A| ≤ clog(|A|)/ log( c
c−1 )|A| = |A|1+log(c)/ log( c

c−1 ).
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2.2 Approximation Algorithms?

The most straightforward approximation variant of the Transverse Partition Cover problem is the

following.

Problem 6. Given a set A and a collection of partitions P = {P1, ..., Pk} of A, how well can we

approximate

max
A1∈P1,...Ak∈Pk

|A1 ∪ · · · ∪Ak|?

The following variant is likely to be much harder, but is closer to the questions we ask in sieve

theory.

Problem 7. Given a set A and a collection of partitions P = {P1, ..., Pk} of A, how well can we

approximate

max
A1∈P1,...Ak∈Pk

|A \ (A1 ∪ · · · ∪Ak)|?

If we forget that the Pis have to be partitions and allow them to be arbitrary collections of

subsets, we have the following result.

Theorem 12 ([2], [6]). Given a set A and a collection of collections of subsets B = {B1, ..., Bk} of

A, there is a randomized polynomial time algorithm which can approximate the quantity

max
A1∈B1,...Ak∈Bk

|A1 ∪ · · · ∪Ak|

to within a factor of 1 − 1
e − o(1). If P 6= NP , then 1 − 1

e is the best possible approximation ratio

for any polynomial time approximation algorithm.

In light of the fact that restricting to the case of partitions makes the problem fixed parameter

tractable, it seems reasonable to hope that there may be better approximation algorithms in this

case. If this restriction is not enough, we can introduce further restrictions that tend to show up in

sieve theory, such as the following.

Definition 4. We say that a collection of partitions P = {P1, ..., Pk} of A is almost orthogonal if

for any i1 < · · · < ij and any Ai1 ∈ Pi1 , ..., Aij ∈ Pij we have

∣∣∣|Ai1 ∩ · · · ∩Aij | − |Ai1 ||A| · · · |Aij ||A| · |A|∣∣∣ ≤ 1.

Now we can consider the promise problem where we are given an instance (A,P) of Transverse

Partition Cover which we are promised is almost orthogonal, and we wish to approximate the

maximum or minimum size of |A1 ∪ · · · ∪Ak| or |A \ (A1 ∪ · · · ∪Ak)| as above.
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2.3 A difficult convex optimization problem from sieve the-

ory

Definition 5. If f(x1, ..., xn) is a multivariable polynomial, we define its Newton polytope Nf to

be the convex hull of the set of exponent vectors of monomials which occur in f with a nonzero

coefficient.

Definition 6. If f(x1, ..., xn) is a multivariable polynomial, we say that f is nonnegative on the

naturals if we have

f(x1, ..., xn) ≥ 0

whenever x1, ..., xn ∈ N. For a given finite set N ⊆ Nn, we define CN to be the set of polynomials f

with Nf ∩ Nn ⊆ N which are nonnegative on the naturals.

The following problem will come up naturally when we wish to compute the sifting functions

fκ(s), Fκ(s).

Problem 8. Given a finite set N ⊆ Nn and a function c : N → R, compute

max
{∑
e∈N

ceλe | f(x) =
∑
e∈N

λe

n∏
i=1

(
xi
ei

)
is nonnegative on the naturals, and λ0 = 1

}
.

For any N ⊆ Nn, the set CN is clearly convex. Since our goal is to optimize a linear function

over the convex set CN , it’s tempting to appeal to a general result of Khachiyan [10] known as the

ellipsoid algorithm which shows that the optimum can be computed efficiently if we have access to

an oracle which can quickly determine whether or not a given f is contained in CN . Unfortunately,

in this case such an oracle is uncomputable!

Theorem 13. If n is sufficiently large, then there is no algorithm which determines whether a given

polynomial f ∈ Z[x1, ..., xn] is nonnegative on the naturals.

Proof. By Matiyasevich’s resolution of Hilbert’s Tenth Problem [23], if n is sufficiently large then

there is no algorithm which determines whether a given polynomial g ∈ Z[x1, ..., xn] ever takes the

value 0 for natural inputs x1, ..., xn. Now take f(x1, ..., xn) = g(x1, ..., xn)2 − 1, and note that f is

nonnegative on the naturals if and only if g never takes the value 0 for natural inputs.

Nevertheless, we can still approximate the answer to any given instance of Problem 8 to whatever

accuracy we like. The idea is to pick some large R, and restrict our attention to polynomials

f such that whenever x1, ..., xn are nonnegative real numbers with x1 + · · · + xn > R, we have

f(x1, ..., xn) ≥ 0 (note that there is an algorithm to test this, by Tarski’s theorem on the decidability

of real algebra [29]). Then we just have to worry about the finitely many additional constraints

f(x1, ..., xn) ≥ 0 for x1, ..., xn ∈ {0, ..., R − 1}. This doesn’t quite solve the problem, since it isn’t
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clear how large we need to take R to be in order to get a good approximation, without having a

bound on the sizes of the λes which occur in the optimal solution. In the cases of Problem 8 which

come up in sieve theory, we will be able to prove such bounds on the sizes of the optimal λes (see

Proposition 34).

Theorem 14. For any finite N ⊂ Nn, any c : N → N , and any s : N → R and for any ε > 0, we

can compute a lower bound to the answer to Problem 8 which is within ε of the true answer, under

the assumption that the true answer is bounded for all c′ in some open neighborhood of c.

Proof. Write c · f for
∑
e∈N ceλe when f(x) =

∑
e∈N λe

∏n
i=1

(
xi
ei

)
. If there is any f ∈ CN with

f(0) = 0, ‖f‖ = 1, and c · f ≥ 0, then there is some c′ close to c with c′ · f > 0, and by taking a

sufficiently large multiple of f we see that the answer to Problem 8 is not bounded for this c′. If

there is no such f , then by a compactness argument we see that there exist finitely many points

x1, ..., xh ∈ Nn such that the inequalities f(xi) ≥ 0 and f(0) = 0 together imply that c · f < 0 for

‖f‖ = 1. We can find such a collection of points by exhaustive search (note that the search may

run forever if our boundedness assumption is violated), and from such a collection of points we can

compute a bound on the λs in any f ∈ CN with f(0) = 1 such that c · f ≥ c · 1.

Let N ′ consist of all e′ ∈ Nn such that we have e′ ≤ e for some e ∈ N , and let F1, ..., Fk be

the collection of all faces of the convex hull of N ′ aside from the coordinate hyperplanes. For each

Fi, we let pi be the polynomial which is given by the sum of the monomials corresponding to the

elements of Fi∩N , and let bi be the corresponding sum of products of binomial coefficients. Choose

δ > 0 such that

|c · δ(b1 + · · ·+ bk)| < ε/2,

and suppose that f ∈ CN . Write f in the monomial basis as

f(x) =
∑
e

aex
e,

and define the weighted-homogeneous parts fi of f by

fi(x) =
∑
e∈Fi

aex
e.

Suppose that Fi is contained in the hyperplane of e ∈ Rn such that
∑
j wjej = d. Then for any

λ > 0 we have

fi(λ
w1
1 x1, ..., λ

wn
n xn) = λdfi(x1, ..., xn),

so for any nonnegative real x1, ..., xn we have

fi(x1, ..., xn) = lim
λ→∞

λ−df(bλw1
1 x1c, ..., bλwnn xnc) ≥ 0.
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Let fδ = f + δ(b1 + · · · + bk), and note that by the definition of δ we have c · fδ > c · f − ε/2. By

the above, for nonnegative real vectors x we have

fδ(x)� (δ +O
(∑

i

x−ηi
)
)(p1(x) + · · ·+ pk(x))

where η > 0 only depends on N ′.
Thus, given a candidate f , we can check that either fδ ∈ CN or that f 6∈ CN , as follows. First

we check that we have

x ≥ 0, pi(x) = 1 =⇒ fi(x) + δpi(x) >
δ

2

for each i - this can be done in finite time by Tarski’s theorem on the decidability of real algebra

[29]. We then find some explicit R such that whenever x1, ..., xn are nonnegative real numbers with

x1 + · · ·+ xn > R, we have fδ(x1, ..., xn) ≥ 0. Now we just check that f(x) ≥ 0 at the finitely many

points with x1, ..., xn ∈ {0, ..., R− 1}.
To finish the proof, we apply the ellipsoid algorithm [10].



Chapter 3

Relaxations

3.1 Usual sieve-theoretic relaxation

The standard sieve theoretic relaxation allows the set A ⊆ Z which we are interested in sifting to be

replaced with any weighted subset of Z that satisfies similar inequalities to our original set. So we

assume only that A is a weighted subset of Z, and define a weighted set Ad for every d | P which

consists of the integers n in A such that d divides n. Additionally, we define a variable ad to be the

number of elements n in A such that gcd(n, P ) = d. Then we see what upper and lower bounds on

a1 = S(A,P) can be deduced from the collection of linear inequalities

|Ad| ≤
κ(d)

d
y +R(d),

|Ad| ≥
κ(d)

d
y −R(d),

|Ad| =
∑
d|k

ak,

ak ≥ 0,

where κ is a multiplicative function and R(d) is a small error term (usually we will take R(d) = κ(d)).

By summing these inequalities after multiplying them by certain carefully chosen sieve weights λd,

we can produce upper and lower bounds on S(A,P). In fact, if we only make the assumptions above,

then by linear programming duality the best possible upper bound we can get on S(A,P) is given

by

S(A,P) ≤ min
{∑
d|P

λdκ(d)

d
y −

∑
d|P

|λd|R(d)
∣∣ λ1 = 1, ∀d | P

∑
k|d

λk ≥ 0
}
,

and the best possible lower bound is similar.

19
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Define sifting functions fκ(s), Fκ(s) by

(1 + o(1))fκ(s)|A|
∏
p<z

(
1− κp

p

)
≤ S(A,Pz) ≤ (1 + o(1))Fκ(s)|A|

∏
p<z

(
1− κp

p

)
,

with fκ(s) as large as possible (resp. Fκ(s) as small as possible) given that the above inequality

holds for all choices of weighted sets A satisfying the assumptions above. Selberg, in his Lectures

on Sieves [28], has shown the following.

Theorem 15 (Selberg [28]). The optimal sifting functions fκ(s), Fκ(s) continuous, monotone, and

computable for s > 1, and they tend to 1 exponentially as s goes to infinity.

What’s more, Selberg has outlined an algorithm to compute fκ(s), Fκ(s) to any desired accuracy

in [28] - I’ll go over this algorithm in a later Chapter 6.

3.2 Detailed linear relaxation

3.2.1 Grids of sieve weights

Proposition 8. If m,n are coprime natural numbers and a ∈ Z, then for any c ∈ Z we have

1c≡a (mod m) =

n−1∑
k=0

1c≡a+km (mod mn).

Theorem 16. Suppose that A ⊂ Z is a finite set and λa,d are real numbers for d | Pz satisfying the

following conditions.

• All but finitely many of the λa,ds are 0.

• For each a ∈ Z, we have λa,1 ≤ 1a∈A.

• For each a ∈ Z and each d | Pz with d > 1, we have

∑
k|d

λa,k ≤ 0.

• For each c ∈ Z, we have ∑
d|Pz

∑
a∈Z

λa,d1c≡a (mod d) = 1.

Then for any c ∈ Z we have

S(A+ c, z) ≥ 1.
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Conversely, if S(A + c, z) ≥ 1 for all c ∈ Z, then a collection of real numbers λa,d satisfying the

above properties exists.

Proof. If there are such λa,d, then for any c ∈ Z, we have

1 =
∑
d|Pz

∑
a∈Z

λa,d1d|a−c

=
∑
a∈Z

∑
d|(Pz,a−c)

λa,d

≤
∑
a∈Z

(Pz,a−c)=1

λa,1

≤ S(A− c, z).

For the converse direction, we consider the set C of tuples of real numbers (xa,d, ya,d)d|Pz,a∈Z/Pz

which satisfy the following constraints:

• For any m,n with mn | Pz, we have xa,m =
∑n
k=0 xa+km,mn,

• xa,d = xa+d,d,

• x0,1 = 1,

• xa,d =
∑
d|k|Pz ya,k,

• ya,d ≥ 0,

and we attempt to minimize the quantity

∑
a∈A

ya,1

over the set C. To any element (xa,d, ya,d)d|Pz,a∈Z/Pz of C we can associate a probability distribution

µ on Z/Pz, by taking µ(c) = xc,Pz . Then the constraints given above imply that

Pµ(c)[c ≡ a (mod d)] = xa,d

and

Pµ(c)[(Pz, a− c) = d] = ya,d.

Conversely, to any probability distribution µ on Z/Pz, we can associate an element of C using the

above formulas for xa,d and ya,d. The quantity which we are trying to minimize is

∑
a∈A

ya,1 = Eµ(c)[S(A− c, z)],
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so the minimum value is just minc∈Z S(A− c, z). If this minimum is at least 1, then the existence of

λa,d satisfying the conditions of the theorem follows from linear programming duality (the λa,d are

the coefficients of the equations xa,d =
∑
d|k|Pz ya,k).

An easy way to guarantee that ∑
k|d

λa,k ≤ 0

for d | Pz, d > 1 is to impose the combinatorial lower bound sieve constraint: for any a ∈ Z, any

d | Pz, and any prime p which is less than all prime factors of d, we just require

λa,d + λa,pd ≤ 0. (3.1)

A collection of weights λa,d satisfying (3.1) on top of the conditions of the previous theorem will be

called a combinatorial grid of sieve weights.

Example 1. We give some examples of combinatorial grids of sieve weights λa,d which allow us to find

some small values of the Jacobsthal function j(n). We will write out rows corresponding to small

divisors d of n, and columns corresponding to a sequence of consecutive values of a ∈ Z, containing

an interval A of length j(n). We’ll also abbreviate 1 as +, abbreviate −1 as −, and leave out 0s.

For our first example, in order to see that j(6) ≤ 4, we can use the grid

1 + + + +

2 - - - -

3 - - - - - -

6 + + + + + +

To see that
∑
d|Pz

∑
a∈Z λa,d1c≡a(mod d) = 1, we first group the six terms λa,61c≡a(mod 6) into two

arithmetic progressions having common difference 2 and length 3 in order to cancel two of the terms

λa,21c≡a(mod 2). Then we cancel two groups of three consecutive terms λa,31c≡a(mod 3) with two of

the terms λa,11c≡a(mod 1). Finally, we cancel the remaining two terms λa,21c≡a(mod 2) with one of

the terms λa,11c≡a(mod 1) and we see that there is exactly one term λa,11c≡a(mod 1) left over, making

the full sum come out to 1.

Actually, we can simplify this first example by noticing it is a blown-up version of the grid

1 + +

3 - - -

which shows that j(3) ≤ 2. All the remaining examples will leave out the prime 2, which can be

reintroduced by blowing up the grid in a similar way.

The next grid shows that j(105) ≤ 5.
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1 + + + + +

3 - - - - - -

5 - - - - -

7 - - - - - - -

Blowing this up, we see that j(210) ≤ 10. It’s easy to see that these bounds are sharp.

The next grid shows that j(2310) ≤ 7.

1 + + + + + + +

3 - - - - - - -

5 - - - -2 - - - - -

7 - - - - - - -

11 - - - - - - - - - - -

15 + + + + +

This is sharp. The next two examples will also be sharp.

This grid shows that j(3 · 5 · 7 · 11 · 13) ≤ 11.

1 + + + + + + + + + + +

3 - - - - - -2 - - - - -

5 - - - - - - - - - - -

7 - - - - -2 -2 -2 - - - -

11 - - - - - - - - - - -

13 - - - - - - - - - - - - -

15 + + +

Finally, this grid shows that j(3 · 5 · 7 · 11 · 13 · 17) ≤ 13.

1 + + + + + + + + + + + + +

3 - - - - - - - - - - - - -

5 - - - - - - - - - - - - -

7 - - - - - - -2 - - - - - -

11 - - - -2 - - -2 - - -2 - - - - - - - - -

13 - - - - - - - - - - - - -

15 + + + + + + + + +

17 - - - - - - - - - - - - - - - - -

33 + + + + + + + + + + +

Searching for combinatorial grids of sieve weights with λa,d supported on a, d ≤ zk can be done in

polynomial time for any fixed k, using any polynomial time algorithm for linear programming. This

can be viewed as a heierarchy of linear relaxations of the shifted sifting problem. Unfortunately, I

haven’t had time to experiment with how well this performs in practice once z gets large.

The next result, when combined with the parity obstruction (see Section 8.2), shows that we

can’t hope to find a grid of sieve weights λa,d supported on d ≤ z2−ε which produces any nontrivial

bounds on the Jacobsthal function.
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Proposition 9. Let λa,d satisfy the conditions of Theorem 16. Then if we define

λd =
1

|A|
∑
a∈Z

λa,d,

we have λ1 ≤ 1 and for any d | Pz with d > 1 we have

∑
k|d

λk ≤ 0,

so the λds define a lower bound sieve. Furthermore, we have

∑
d

λd
d
> 0,

so this lower bound sieve has a nontrivial main term.

3.2.2 Smoothed interval

The grids of sieve weights in the examples form the previous subsection get progressively more

complicated as z increases. In order to simplify the picture, we’ll look at grids of weights λa,d which

factor in the form

λa,d = I(a)λd,

where I is a function satisfying

0 ≤ I(a) ≤ 1a∈A

and λd is a collection of lower bound sieve weights, satisfying

∑
k|d

λk ≤ 0

for d | Pz, d > 1. We also relax the condition

∑
d|Pz

∑
a∈Z

λa,d1c≡a (mod d) = 1

to the weaker ∑
d|Pz

∑
a∈Z

λa,d1c≡a (mod d) > 0,

which is still strong enough to show that S(A+ c, z) ≥ 1 for any c ∈ Z.

An equivalent way of looking at this is that we are replacing the set A by a smaller weighted set

with weights given by the function I, and applying a standard lower bound sieve to the resulting
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weighted set. Although this weighted set is smaller - causing the main term of the bound we get by

sieving to decrease - we can hope that smoothing out the set A decreases the error term. This idea

of replacing the set A by a weighted set was suggested by Selberg in section 19 of his Lectures on

Sieves [28].

Rather than searching for the optimal choice of I, we will instead focus on a specific choice in

the special case where A = [1, |A|] is an interval, which is motivated as follows. The idea is that

the main reason the error term in the size of |(A + c)d| is so large is that we have no idea how the

boundaries of A+ c line up with the multiples of d. In order to mitigate this, we can imagine taking

the endpoints of the interval A+c and moving them inwards by a random amount between 0 and W

(where W is some fixed parameter with 2W ≤ |A|), giving us a roughly equal chance of a favorable

error term and an unfavorable error term if W is bigger than d. This corresponds to the choice of

function

I(a) =



0 a ≤ 0 or a ≥ |A|+ 1,

a
W 0 ≤ a ≤W,

1 W ≤ a ≤ |A|+ 1−W,
|A|+1−a

W |A|+ 1−W ≤ a ≤ |A|+ 1.

Proposition 10. If I as defined as above, then for any d ∈ N+ and any c ∈ R we have∣∣∣∣∣ |A|+ 1−W
d

−
∑

a≡c (mod d)

I(a)

∣∣∣∣∣ ≤ d

W

{W
d

}{
− W

d

}
.

Proof. Let f(c) be defined by

f(c) =
∑

a≡c (mod d)

I(a)− |A|+ 1−W
d

.

Then f has period d, and has average value 0. The derivative of f is given by

f ′(c) =
1

W

∑
k∈Z

(1c−kd∈[0,d{W/d}] − 1c−kd∈[|A|+1−d{W/d},|A|+1]).

Integrating, we find that maxc f(c) ≤ minc f(c) + d
W {

W
d }. Since the average value of f is 0, we

see that maxc f(c) is maximized when f takes its maximum value at as few points as possible, i.e.

when it takes its maximum value at just the points congruent to d{Wd } modulo d (this occurs when

|A|+ 1 ≡ 2d{Wd } (mod d)). From here, it’s easy to see that

max
c
f(c) ≤ d

W

{W
d

}
− 1

d
· d
W

{W
d

}
· d
{W
d

}
=

d

W

{W
d

}{
− W

d

}
,
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and a similar argument shows that

min
c
f(c) ≥ − d

W

{W
d

}
+

1

d
· d
W

{W
d

}
· d
{W
d

}
= − d

W

{W
d

}{
− W

d

}
.

Theorem 17. If the sieve weights λd, d | Pz, define a lower bound sieve and A is an interval, then

for any W ≤ |A|/2 we have

S(A, z) ≥

(∑
d

λd
d

)
(|A|+ 1−W )− 1

W

∑
d

|λd|d
{W
d

}{
− W

d

}
.

In particular, if
∑
d
λd
d > 0 and

|A| ≥W +
1

W

∑
d |λd|d

{
W
d

}{
− W

d

}
∑
d
λd
d

,

then

S(A, z) ≥ 1.

Corollary 2. If the sieve weights λd, d | Pz, define a lower bound sieve with
∑
d
λd
d > 0, then

j(Pz) ≤
√∑

d |λd|d∑
d
λd
d

.

Example 2. In this example we will show that among any 1900 consecutive integers, at least one of

them is not a multiple of any of the first 50 primes (this is a worse bound than the one found with a

brute force search, in the table of bounds on the Jacobsthal function in the introduction). We will

treat the prime 2 seperately, so from now on I will try to prove that among any 950 consecutive odd

numbers, at least one has no prime factors less than or equal to 229.

To make the description of the sieve weights more compact, I’ll define an ordering on squarefree

numbers that is weaker than ordering by size, but is stronger than ordering by divisibility. For

squarefree numbers a and b, write a = pj · · · p1 and b = qk · · · q1, with pj < · · · < p1, qk < · · · < q1.

Then I say that a ≺ b if j ≤ k and pi ≤ qi for i between 1 and j.

Now I define the set D by

D = {d | d odd, squarefree, and d ≺ 3 · 229 or d ≺ 3 · 5 · 89 or d ≺ 5 · 7 · 31 or d ≺ 7 · 11 · 13},

and take the sieve weights λd to be the combinatorial lower bound sieve defined by

λd =

µ(d) d ∈ D,

0 d 6∈ D.
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The largest element of D is 3 · 5 · 89 = 1335, which is a bit larger than the size of the interval I am

sifting. The number of elements of the set D is 165, and the sum of µ(d)
d over d ∈ D is about 1

24.7993 .

So the classical sieve theoretic bound says that the number of integers relatively prime to the first

49 odd primes in an interval of length 950 is at least 950
24.7993 − 165 = −126.6..., but since this is less

than 0 this isn’t good enough.

The average size of an element of D is 4619
15 , or about 307.933. If we apply the simpler bound in

Theorem 17 with W = 462, we see that among any 950 consecutive odd integers, the number that

are relatively prime to the first 50 primes is at least

950− 462 + 1

24.7993
− 165 · 307.933

4 · 462
= −7.776...,

which still isn’t a good enough lower bound. Using the slightly messier bound in Theorem 17, where

the error term coming from d is d
W {

W
d }{−

W
d }, we get the lower bound

950− 462 + 1

24.7993
− 19.7165 = 0.00187...,

which is, at last, greater than zero.

3.3 Semidefinite relaxation and the Large Sieve

One way of motivating the semidefinite relaxation is the following generalization of the converse

direction of Theorem 16. We consider the set C of tuples of vectors (xa,d, ya,d)d|Pz,a∈Z/Pz which

satisfy the following constraints:

• for any m,n with mn | Pz, we have ‖xa,m‖2 =
∑n
j=0 ‖xa+jm,mn‖2,

• for any d, e | Pz, we have xa,d · xa,e = ‖xa,[d,e]‖2, where [d, e] is the lcm of d and e,

• xa,d = xa+d,d,

• xa,d · xb,e = 0 if a 6≡ b (mod gcd(d, e)),

• ‖x0,1‖ = 1,

• ‖xa,d‖2 =
∑
d|k ‖ya,k‖2,

• for any d | k, we have xa,d · ya,k = ‖ya,k‖2,

• ya,d · yb,e = 0 if gcd(d, a− b), gcd(e, a− b), and gcd(d, e) are not all equal,

and we attempt to minimize the quantity

∑
a∈A
‖ya,1‖2
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over the set C.
To any element (xa,d, ya,d)d|Pz,a∈Z/Pz of C we can associate a probability distribution µ on Z/Pz,

by taking µ(c) = ‖xc,Pz‖2. Then the constraints given above imply that

Pµ(c)[c ≡ a (mod d)] = ‖xa,d‖2,

Pµ(c)[c ≡ a (mod d) ∧ c ≡ b (mod e)] = xa,d · xb,e,

and

Pµ(c)[(Pz, a− c) = d] = ‖ya,d‖2.

Conversely, to any probability distribution µ on Z/Pz, we can associate an element of C. First

I’ll describe a way to construct the xa,ds. Consider the matrix M with rows and columns indexed

by ordered pairs (a, d) with d | Pz, a ∈ Z/d, such that

M(a,d),(b,e) = Pµ(c)[c ≡ a (mod d) ∧ c ≡ b (mod e)].

The matrix M is then a positive semidefinite matrix, since it is a weighted average of rank one

positive semidefinite matrices corresponding to specific values of c. Thus there exists a tuple of

vectors xa,d such that

xa,d · xb,e = M(a,d),(b,e).

To see that it is possible to find the full tuple (xa,d, ya,d), just note that for any specific value of

c there corresponds a collection of 1-dimensional vectors (xa,d, ya,d) satisfying all of the constraints

listed above, and then take a weighted some of orthogonal copies of these tuples of vectors over the

various choices of c.

I’ll illustrate one possible way to take advantage of this relaxation. Let B be a positive semidef-

inite matrix with rows and columns indexed by (a, d) with d | Pz, a ∈ Z/d. Then since B and M

are both positive semidefinite, we have

Tr(BM) ≥ 0,

and expanding this gives ∑
(a,d),(b,e)

B(a,d),(b,e)xa,d · xb,e ≥ 0.

Since xa,d · xb,e = 0 when a 6≡ b (mod gcd(d, e)), this can be rewritten as

∑
d,e|Pz

∑
a∈Z/[d,e]

B(a,d),(a,e)‖xa,[d,e]‖2 ≥ 0.
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Next we take a lower bound sieve inequality for each a as in the section on grids of sieve weights, to

get

‖ya,1‖2 ≥
∑
d|Pz

λa,d‖xa,d‖2.

Summing this all up, we get the inequality

S(A− c, z) ≥
∑
a

∑
d|Pz

λa,d1c≡a (mod d) −
∑
d,e|Pz

∑
a∈Z/[d,e]

B(a,d),(a,e)1c≡a (mod [d,e])

=
∑
d|Pz

( ∑
a≡c (mod d)

λa,d −
∑

[d1,d2]=d

B(c,d1),(c,d2)

)
,

which holds as long as B is positive semidefinite and the λa,ds satisfy

∑
k|d

λa,k ≤ 1d=1,a∈A.

It isn’t clear to me whether the inequality above is useful in practice, especially since so far we

haven’t really taken advantage of the ya,ds. One way to take advantage of the ya,ds comes up in

applications of the Large Sieve. For any α ∈ R/Z, we define a vector S(α) by

S(α) =
∑
a∈A

e2πiαaya,1. (3.2)

Note that we have

‖S(α)‖2 =
∑
a,b∈A

cos(2πα(a− b))ya,1 · yb,1,

so for any fixed α, we see that ‖S(α)‖2 is a linear function of the dot products ya,1 · yb,1.

Theorem 18 (Montgomery [24]). Suppose that for each p < z, the set Z ⊆ A avoids κp congruence

classes modulo p, and for any d | Pz define κ(d) =
∏
p|d κp and ϕκ(d) =

∏
p|d(p−κp). If ya,1 = 1a∈Z

and S(α) is defined as in (3.2) for α ∈ R/Z, then for any d | Pz we have

∑
a∈(Z/d)∗

‖S(ad )‖2 ≥ κ(d)

ϕκ(d)
|Z|2.

Theorem 19 (Large Sieve [25]). If A is an interval, α1, ..., αR ∈ R/Z satisfy ‖αr − αs‖ ≥ δ, and

the vectors S(α) are defined as in (3.2), then we have

R∑
r=1

‖S(αr)‖2 ≤ (|A|+ δ−1 − 1)
∑
a∈A
‖ya,1‖2.
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Taking κp = 1 for all p, supposing that A is an interval, and letting Z be the set of elements of

A such that gcd(Pz, a− c) = 1, we see that for any y we have( ∑
d|Pz
d≤√y

1

ϕ(d)

)
S(A− c, z)2 ≤

∑
d|Pz
d≤√y

∑
a∈(Z/d)∗

‖S(ad )‖2 ≤ (|A|+ y)S(A− c, z),

so

S(A− c, z) ≤ |A|+ y∑
d|Pz
d≤√y

1
ϕ(d)

.



Chapter 4

Toys and Intuition

4.1 Sifting with at most four “primes”

In this section, we will consider the following problem, parametrized by four real numbers p, q, r, s

with 1 < p ≤ q ≤ r ≤ s.

Problem 9. What is the maximum y such that there is a weighted set A and four weighted subsets

Ap, Aq, Ar, As ⊆ A such that, if we formally define A1 = A and Amn = Am ∩An, then we have

−1 ≤ |Ad| −
y

d
≤ 1

for d = 1, p, q, r, s, pq, pr, ps, qr, qs, rs, pqr, pqs, prs, qrs, pqrs, and such that we also have

A = Ap ∪Aq ∪Ar ∪As?

This is a linear programming problem, with coefficients depending continuously on p, q, r, s.

Letting ad denote the number of elements of Ad which are not also elements of any Ad′ with d | d′

(interpreted formally), we have

|Ad| =
∑
d|k

ak,

so the constraints can be written as

−1 ≤ y

d
−
∑
d|k

ak ≤ 1 (4.1)

together with ad ≥ 0 and

a1 = 0.

31
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Summing the constraints (4.1) with weights λd, we see that if

∑
k|d

λd ≤ 0 (4.2)

for d > 1, then

y
∑
d|pqrs

λd
d
≤
∑
d|pqrs

|λd|+
∑
k|pqrs

ak
∑
d|k

λd ≤
∑
d|pqrs

|λd|.

In particular, if ∑
d|pqrs

λd
d
> 0,

then

y ≤
∑
d|pqrs |λd|∑
d|pqrs

λd
d

.

By linear programming duality, we have the following.

Proposition 11. For any 1 < p ≤ q ≤ r ≤ s, we have

max{y | ∃(ad)d|pqrs ∈ R16
≥0 satisfying (4.1) and a1 = 0}

= min

{∑
d|pqrs |λd|∑
d|pqrs

λd
d

| (λd)d|pqrs ∈ R16 satisfy (4.2) and
∑
d|pqrs

λd
d
> 0

}
.

Furthermore, if ad, λd are chosen optimally, then we have the following “complementary slackness”

relations.

• If ad > 0, then
∑
k|d λd = 0.

• If λd 6= 0, then y
d −

∑
d|k ak =

1 λd > 0,

−1 λd < 0.

Now we describe the various optimal sieves that appear in various ranges.

4.1.1 Range I (Eratosthenes-Legendre sieve)

Range I is given by

(r − 1)(s− 1) ≤ 4. (I)
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In this range, the optimal choice for λd is λd = µ(d), and the optimal choice of y, ad is given by

y =
16pqrs

(p− 1)(q − 1)(r − 1)(s− 1)
,

apqrs =
16

(p− 1)(q − 1)(r − 1)(s− 1)
− 1,

aqrs =
16

(q − 1)(r − 1)(s− 1)
+ 2,

ars =
16

(r − 1)(s− 1)
− 4,

as =
16

s− 1
+ 8,

and the remaining ads are defined symmetrically.

4.1.2 Range II (combinatorial)

Range II is given by

3 ≤ rs− r − s, (II.1)

(q − 1)(rs− r − s) ≤ 6r, (II.2)

(p− 1)(q − 1)(rs− r − s) ≤ 6((p− 1)(r − 1) + (q − 1)(r − 1)− (p− 1)(q − 1)). (II.3)

In this range, the optimal choice for λd is

λd =

µ(d) rs - d,

0 rs | d,

and the corresponding y is

y =
12pqrs

(p− 1)(q − 1)(rs− r − s)
.

In the interior of this range, the set of possible values for the ads is three dimensional. In terms of
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aprs, aqrs, and apqrs, the rest of the ads can be described as follows:

ars = 0,

apqs =
12r

(p− 1)(q − 1)(rs− r − s)
− apqrs + 1,

aqs =
12r

(q − 1)(rs− r − s)
− aqrs − 2,

apq =
12

(p− 1)(q − 1)
+ apqrs − 3,

aq =
12

q − 1
+ aqrs + 6,

as =
12r

rs− r − s
+ 4,

with the remaining ads defined by interchanging p and q or interchanging r and s in the above. The

variables aprs, aqrs, apqrs need to be chosen to satisfy the following system of inequalities:

max
{

0, 12
(p−1)(q−1)(rs−r−s) − 1, 3− 12

(p−1)(q−1)

}
≤ apqrs ≤

12

(p− 1)(q − 1)(rs− r − s)
+ 1,

max
{

0, 12q
(p−1)(q−1)(rs−r−s) − apqrs − 1

}
≤ aprs ≤ min

{
12q

(p−1)(q−1)(rs−r−s) − apqrs + 1, 12r
(p−1)(rs−r−s) − 2

}
,

max
{

0, 12p
(p−1)(q−1)(rs−r−s) − apqrs − 1

}
≤ aqrs ≤ min

{
12p

(p−1)(q−1)(rs−r−s) − apqrs + 1, 12r
(q−1)(rs−r−s) − 2

}
,

12pq

(p− 1)(q − 1)(rs− r − s)
− 1 ≤ aprs + aqrs + apqrs ≤

12pq

(p− 1)(q − 1)(rs− r − s)
+ 1.

To see that the first inequality can be satisfied, note that by (II.3) we have

6(r − 1)(s− 1) ≥ 6((p− 1)(r − 1) + (q − 1)(r − 1)− (p− 1)(q − 1)) ≥ (p− 1)(q − 1)(rs− r − s),

so
12

(p− 1)(q − 1)(rs− r − s)
+ 1 ≥ 3− 12

(p− 1)(q − 1)
.

As long as 6r ≥ (q − 1)(rs− r − s) (which is (II.2)) and apqrs satisfies

apqrs ≥ 1− 12(pr − p− r)
(p− 1)(q − 1)(rs− r − s)

,

we can find aprs, aqrs satisfying the second and third inequalities. What’s left is to check that the

fourth inequality can be satisfied. Since the set of possible values of aprs+aqrs+apqrs is an interval,

we just need to check that it can take both sufficiently large and sufficiently small values. To see

that it can take sufficiently small values, take apqrs as large as possible and take aprs, aqrs as small

as possible.

What’s left is to check that aprs+aqrs+apqrs can take a value which is ≥ 12pq
(p−1)(q−1)(rs−r−s) −1.
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If it is possible to choose apqrs such that we may take aprs = 12q
(p−1)(q−1)(rs−r−s) − apqrs + 1 and

aqrs = 12r
(q−1)(rs−r−s) − 2 (or vice-versa), then this choice gives

aprs + aqrs + apqrs =
12(rp+ q − 1)

(p− 1)(q − 1)(rs− r − s)
− 1 ≥ 12pq

(p− 1)(q − 1)(rs− r − s)
− 1.

Otherwise there are two cases. If we can take aprs = 12r
(p−1)(rs−r−s) − 2, aqrs = 12r

(q−1)(rs−r−s) − 2,

then taking apqrs = 12
(p−1)(q−1)(rs−r−s) + 1, we have

aprs+aqrs+apqrs−( 12pq
(p−1)(q−1)(rs−r−s)−1) =

12((p− 1)(r − 1) + (q − 1)(r − 1)− (p− 1)(q − 1))

(p− 1)(q − 1)(rs− r − s)
−2,

and this is at least 0 by (II.3). In the last case, the best we can do is to take aprs = 12q
(p−1)(q−1)(rs−r−s)−

apqrs + 1, aqrs = 12p
(p−1)(q−1)(rs−r−s) − apqrs + 1, and take apqrs as small as possible. Since we are in

this last case, this smallest possible value of apqrs must satisfy the inequality

apqrs > 3− 12(pr − p− r)
(p− 1)(q − 1)(rs− r − s)

≥ 3− 12

(p− 1)(q − 1)
.

Thus the smallest possible choice for apqrs is either apqrs = 0 or apqrs = 12
(p−1)(q−1)(rs−r−s) − 1. If it

is the latter, then

aprs + aqrs + apqrs − ( 12pq
(p−1)(q−1)(rs−r−s) − 1) = 4− 12

rs− r − s
,

which is at least 0 by (II.1). Finally, if apqrs = 0, then

aprs + aqrs + apqrs − ( 12pq
(p−1)(q−1)(rs−r−s) − 1) = 3− 12(pq − p− q)

(p− 1)(q − 1)(rs− r − s)
,

and by (II.1) this follows from

rs− r − s ≥ 4(rs− r − s)
(r − 1)(s− 1)

≥ 4(pq − p− q)
(p− 1)(q − 1)

.

4.1.3 Range III (first new sieve)

Range III is defined by

6((p− 1)(r − 1) + (q − 1)(r − 1)− (p− 1)(q − 1)) ≤ (p− 1)(q − 1)(rs− r − s), (III.1)

(p− 1)(q − 1)(rs− r − s) ≤ 5(pq + pr − qr − 1) + (p− 1)r, (III.2)

2(p− 1)(q − 1)(rs− r − s) ≤ 11(2(p− 1)s− (pq + pr−qr − 1)) + (p− 1)(r − 1) + (q − 1)(r − 1)− (p− 1)(q − 1).

(III.3)
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The optimal λds are given by

λd =



µ(d) d | pqr or d | s,
1
2 d ∈ {ps, qs, rs},

0 d ∈ {pqs, prs, qrs},

− 1
2 d = pqrs,

and the corresponding y is

y =
11pqrs

(p− 1)(q − 1)(r − 1)s− pqr + 1
2 (pq + qr + pr − 1)

=
22pqrs

D
,

where

D = 2(p− 1)(q − 1)(r − 1)s− 2pqr + pq + qr + pr − 1.

There is only one choice for the optimal ads: they are given by

ars = 0,

apqrs =
22

D
+ 1,

apqr =
22(s− 1)

D
,

aqrs =
11(pq + pr − qr − 1)

D
− 1,

aqr =
22(p− 1)s− 11(pq + pr − qr − 1)

D
− 1,

as =
22pqr − 11(pq + qr + pr − 1)

D
+ 3,

ar =
22((p− 1)(q − 1)s− pq + 1)

D
+ 6,

with the remaining ads given by permuting p, q, r in the above.

The basic principle behind this sieve is easier to understand in terms of upper bound sieves,

and gives us our first example of an iteratively constructed sieve other than the combinatorial sieve.

We’ll use it later to show that in the case of the linear sieve (that is, κp = 1 for all p), the optimal

sieve is often not a combinatorial sieve.

Proposition 12. For any w ≤ z, we have

S(A, z) ≤ S(A,w)− 1

2

∑
z>p≥w

S(Ap, w) +
1

2

∑
z>p>q>r≥w

S(Apqr, w).
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4.1.4 Range IV (combinatorial)

Range IV is defined by

5(p− 1)r ≤ (p− 1)(q − 1)(r − 1)s− (p− 1)qr, (IV.1)

5(pq + pr − qr − 1) ≤ (p− 1)(q − 1)(r − 1)s− (p− 1)qr, (IV.2)

(p− 1)(q − 1)(r − 1)s− (p− 1)qr ≤ 5(p− 1)s, (IV.3)

(p− 1)(q − 1)(r − 1)s− (p− 1)qr ≤ 10qr. (IV.4)

The optimal λds are given by

λd =

µ(d) d | pqr or d | ps,

0 else,

and the corresponding y is

y =
10pqrs

(p− 1)(q − 1)(r − 1)s− (p− 1)qr
.

In the interior of this range, the set of optimal ads is three dimensional. Set D = (p− 1)(q − 1)(r−
1)s− (p− 1)qr. In terms of apqs, aprs, apqrs, the ads are given by:

aqs = 0,

aqrs = 0,

apqr =
10s

D
− apqrs + 1,

aps =
10qr

D
− apqs − aprs − apqrs − 1,

aqr =
10s

(q − 1)(r − 1)s− qr
− 2,

apr =
10(q − 1)s

D
− aprs − 2,

as =
10qr

(q − 1)(r − 1)s− qr
+ 2,

ar =
10(q − 1)s

(q − 1)(r − 1)s− qr
+ 4,

ap =
10

p− 1
+ apqs + aprs + apqrs + 5,

with the remaining ads given by swapping q and r in the above (note that aqr ≥ 0 is equivalent to
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(IV.3)). The variables apqs, aprs, apqrs need to satisfy the following inequalities:

max
{

0,
10p

D
− 1
}
≤ apqrs ≤

10

D
+ 1,

max
{

0,
10pq

D
− apqrs − 1

}
≤ aprs ≤ min

{10q

D
− apqrs + 1,

10(q − 1)s

D
− 2
}
,

max
{

0,
10pr

D
− apqrs − 1

}
≤ apqs ≤ min

{10r

D
− apqrs + 1,

10(r − 1)s

D
− 2
}
,

aprs + apqs + apqrs ≤
10qr

D
− 1.

By (IV.1), we have
10pr

D
− apqrs − 1 ≤ 10r

D
− apqrs + 1,

and by (IV.3), we have

0 ≤ 10(p− 1)s

D
− 2 ≤ 10(q − 1)s

D
− 2,

so as long as we can choose apqrs with

apqrs ≥
10(pq − (q − 1)s)

D
+ 1,

we can choose aprs, apqs satisfying the second and third inequalities. That such an apqrs can be

chosen follows from the inequality 1 ≥ pq − (q − 1)s, which can be checked by adding (IV.2) and

(IV.3) and using s ≥ r.
To check that the inequality aprs + apqs + apqrs ≤ 10qr

D − 1 can be satisfied, note that if we can

choose apqrs such that one of apqs, aprs can be taken to be 0 and the minimum possible value for

the other is not 0, then taking both apqs, aprs to be their minimum allowed values works. If the

minimum values of apqs, aprs are always both 0, then we take apqrs to be as small as possible, and

we see that this works by 10qr
D − 1 ≥ 0, which is (IV.4). Finally, if neither of apqs, aprs can ever be

0, then we take apqrs = 10
D + 1 and take apqs, aprs as small as possible, which works by (IV.2).

4.1.5 Range V (second new sieve)

Range V is defined by

10(p− 1)s− 5(pq + pr − qr − 1) ≤ (p− 1)(q − 1)(r − 1)(s− 1)− ps− qr + p+ q + r + s− 2,

(V.1)

(p− 1)(q − 1)(r − 1)(s− 1)− ps− qr + p+ q + r + s− 2 ≤ 5(pq + pr − qr − 1). (V.2)
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The optimal λds are

λd =


1 d ∈ {1, pq, pr, qs, rs},

−1 d ∈ {p, q, r, s, pqrs},

0 d ∈ {ps, qr, pqr, pqs, prs, qrs},

and the correspoding y is

y =
10pqrs

D
, D = (p− 1)(q − 1)(r − 1)(s− 1)− ps− qr + p+ q + r + s− 2.

In the interior of this range, the set of optimal ads is four dimensional. In terms of apqr, apqs, aprs, aqrs,

the ads are given by

aps = 0,

apqrs =
10

D
+ 1,

ars =
10(pq − 1)

D
− aprs − aqrs − 2,

as =
10(pqr − pq − pr + 1)

D
+ aqrs + 4,

with the remaining ads given by applying powers of the cyclic permutation (p q s r) to the above

equations. The variables apqr, apqs, aprs, aqrs need to satisfy the inequalities

max
{

0,
10(p− 1)

D
− 2
}
≤ aqrs ≤

10(p− 1)

D
,

10(qr − 1)

D
− 2 ≤ apqs + aprs ≤

10(qr − 1)

D
,

aprs + aqrs ≤
10(pq − 1)

D
− 2,

and all of their cyclically permuted (by powers of (p q s r)) analogues (note that the upper bound

in the second line follows from the upper bounds in cyclic analogues of the first line, and is therefore

redundant). One can show that (V.1) and (V.2) are necessary fairly directly from these inequalities.

Additionally, one can easily show that

apqr ≥
10p(s− r)

D
+ apqs,

apqr ≥
10p(s− q)

D
+ aprs,

apqs ≥
10r(q − p)

D
+ aqrs,

apqs ≥
10q(r − p)

D
+ aqrs,
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and that these inequalities show that the two inequalities aqrs ≥ max{0, 10(p−1)
D − 2} and apqr ≤

10(s−1)
D imply all their cyclically permuted analogues.

To see that (V.1) and (V.2) are sufficient, note that if we take

aqrs =
5(pq + pr − qr − 1)

D
− 1,

aprs =
5(pq + qr − pr − 1)

D
− 1,

apqs =
5(pr + qr − pq − 1)

D
− 1,

apqr =
5(2ps+ qr − pq − pr − 1)

D
− 1,

then all the inequalities involving sums of two of apqr, apqs, aprs, aqrs are automatically satisfied,

(V.1) is equivalent to 0 ≤ aqrs, (V.2) is equivalent to apqr ≤ 10(s−1)
D , and (V.2) implies that

10(p−1)
D − 2 ≤ 10(p−1)s

D − 2 ≤ aqrs.
The basic principle behind this sieve is given in the following proposition.

Proposition 13. Let G = (V,E) be a graph with vertex set equal to the set of primes below z, and

let Cmin be the set of minimal cycles (that is, cycles having no chords) of G. Then

S(A, z) ≥ |A| −
∑
p∈V
|Ap|+

∑
{p,q}∈E

|Apq| −
∑

{p1,...,pk}∈Cmin

|Ap1···pk |.

We can also make an iterative version of this inequality. So far I haven’t found any case where

it is useful.

4.1.6 Range VI (combinatorial)

Range VI is defined by

4s ≤ qrs− qr − qs− rs, (VI.1)

4(pq + pr − qr − 1) ≤ (p− 1)(qrs− qr − qs− rs), (VI.2)

(p− 1)(qrs− qr − qs− rs) ≤ 8qr. (VI.3)

The optimal λds are given by

λd =

µ(d) d ∈ {1, p, q, r, s, pq, pr, ps},

0 else,
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and the corresponding y is

y =
8pqrs

D
, D = (p− 1)(qrs− qr − qs− rs).

In the interior of the range, the set of optimal ads is four dimensional. In terms of apqr, apqs, aprs, apqrs,

the other ads are given by

aqrs = 0,

ars = 0,

aps =
8qr

D
− apqs − aprs − apqrs − 1,

ap =
8

p− 1
+ apqr + apqs + aprs + 2apqrs + 4,

as =
8qr

qrs− qr − qs− rs
+ 2,

with the remaining ads given by permuting q, r, s in the above equations. The variables apqr, apqs, aprs, apqrs

need to satisfy the inequalities

max
{

0,
8p

D
− 1
}
≤ apqrs ≤

8

D
+ 1,

max
{

0,
8ps

D
− apqrs − 1

}
≤ apqr ≤

8s

D
− apqrs + 1,

apqs + aprs+apqrs ≤
8qr

D
− 1,

and all of their analogues under permuting q, r, s. Using (VI.1) we see that the first two groups

of inequalities can be satisfied. For the last group of inequalities, if it is possible to take two of

apqr, apqs, aprs equal to 0, then doing so and taking the remaining variables as small as possible

works by (VI.3). Otherwise, we may as well take apqrs = 8
D + 1, in which case taking apqr, apqs, aprs

as small as possible works by (VI.2).

4.1.7 Ranges VII - X (all combinatorial)

The remaining ranges are all fairly simple, so I’ll just summarize. Range VII is given by

9qr ≤ (p− 1)(q − 1)(r − 1)s− pqr ≤ 9

2
(p− 1)s, (VII)

with optimal λd given by µ(d) for d ∈ {1, p, q, r, s, pq, pr, qr} and λd = 0 otherwise. There is just

one optimal choice for the ads, with the nonzero ads given by

apqr =
9s

D
+ 1, aqr =

9(p− 1)s

D
− 2, as =

9pqr

D
+ 1, ar =

9(p− 1)(q − 1)

D
+ 4,
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and their analogues under permuting p, q, r (here D = (p− 1)(q − 1)(r − 1)s− pqr).
Range XIII is given by

max{ 7
2 (p− 1)s, 7qr} ≤ pqrs− pqr − pqs− prs− qrs+ qs+ rs ≤ 7qs, (VIII)

with optimal λd given by µ(d) for d ∈ {1, p, q, r, s, pq, pr} and λd = 0 otherwise. There is a one

dimensional family of optimal ads, with the nonzero ads given in terms of apqr by

apr =
7qs

D
− apqr − 1, as =

7pqr

D
+ 1, ar =

7(p− 1)qs

D
+ 2, ap =

7(qr − q − r)s
D

+ apqr + 3,

and their analogues under swapping q and r (here D = pqrs− pqr− pqs− prs− qrs+ qs+ rs). The

variable apqr needs to satisfy the inequality

max{0, 7ps
D − 1} ≤ apqr ≤

7s

D
+ 1.

Range IX is given by

6qs ≤ pqrs− pqr − pqs− prs− qrs+ rs ≤ 6rs, (IX)

with optimal λd given by µ(d) for d ∈ {1, p, q, r, s, pq} and λd = 0 otherwise. There is just one

optimal choice of optimal ads.

Range X is given by

5rs ≤ pqrs− pqr − pqs− prs− qrs, (X)

with optimal λd given by µ(d) for d ∈ {1, p, q, r, s} and λd = 0 otherwise. There is just one optimal

choice of optimal ads.

4.2 Model problem - all primes have the same size

We will try to understand the asymptotics of the sifting limit βκ as the sifting dimension κ goes to

infinity, by studying a model sifting problem introduced by Selberg in Section 13 of [28], in which

all of the primes have roughly the same size. One possible motivation for this is the intuition that

the way we handle the large primes seems to have the most important effects on the asymptotic

behavior of the sifting functions when κ gets large (this intuition will be better motivated after we

see the algorithm for computing the sifting functions Fκ(s), fκ(s)).

More precisely, let A be the interval [1, y] and let P be a set of primes such that there is a number

R with the property that the product of any R primes from P is below y, but the product of any

R+ 1 primes from P is greater than y (note that R is within 1 of the parameter s which appears in
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the usual sifting problem). Define a new parameter v, analogous to κ, by

v =
∑
p∈P

κp
p
.

It isn’t hard to see that the bounds we can get on S([1, y],P) only depend on the quantities v and

R, since by an averaging argument we may assume without loss of generality that the sieve weights

λd depend only on ω(d), the number of prime factors of d. For this reason we will switch the indices

on our sieve weights from d to ω(d), so we need to optimize only λ0, ..., λR, with λ0 = 1. We make

the definition

θ(n) =

R∑
i=0

λi

(
n

i

)
.

Thus, the upper bound sieve reduces to trying to minimize the quantity

∑
n≥0

θ(n)

n!
vn = ev

R∑
n=0

λn
n!
vn

subject to the constraint θ(n) ≥ 0 for n ∈ N. Similarly, the lower bound sieve reduces to trying to

maximize the same quantity subject to the constraint θ(n) ≤ 0 for n ∈ N+. For every R, we let vR

be the largest v such that the optimal lower bound is nonnegative. Note that for the purpose of

computing vR, we can ignore the normalization λ0 = 1.

Selberg [28] shows that bR+1
2 c ≤ vR ≤ R (this is equation (13.22′′′) of Section 13 of [28]), and

that for any v,R the optimal θ takes the form

θ(n) =
∏
i

(
1− n

νi

)(
1− n

νi + 1

)

with νi ∈ N for the upper bound sieve, and

θ(n) = (1− n)
∏
i

(
1− n

νi

)(
1− n

νi + 1

)

with νi ∈ N for the lower bound sieve (these are equations (13.6) and (13.6′) of Section 13 of [28]).

Furthermore, Selberg [28] shows that each νi ≤ max(2R + 2v,R + 4v) (this is equation (13.8) of

Section 13 of [28]), so for any v,R the optimal θ can be found with a finite amount of computation.

An algorithm for computing the optimal θ given v,R and for computing vR given R is described in

Algorithm 1. In practice, once R gets large rounding errors start to accumulate when floating point

arithmetic is used. The basic result behind the correctness of this algorithm is given in the following

proposition.

Proposition 14. For R ∈ N and v ≥ 0, suppose that the polynomial θ has degree R, satisfies
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θ(0) = 1, has (−1)Rθ(n) ≥ 0 for n ∈ N+, has R distinct positive integer roots, and has the property

that whenever we change just one root of θ we either fail to satisfy one of the previously mentioned

properties of θ or we increase the quantity

Mv,R(θ) = (−1)R
∑
n≥0

θ(n)

n!
vn.

Then in fact θ minimizes Mv,R(θ) among all polynomials of degree R satisfying θ(0) = 1 and

(−1)Rθ(n) ≥ 0 for n ∈ N+.

Proof. The set of coefficient vectors of polynomials θ of degree R satisfying θ(0) = 1 and (−1)Rθ(n) ≥
0 for n ∈ N+ forms a convex set, call it CR, bounded by hyperplanes corresponding to positive integers

which might be roots of θ. Any interior point of CR can be replaced by a vertex of CR (that is, a

point where R bounding hyperplanes of CR meet, corresponding to a polynomial with R distinct

positive integer roots) without decreasing Mv,R(θ) by replacing negative roots of θ by roots at 1,

replacing pairs of complex conjugate roots of θ by their real parts, and migrating non-integral real

roots or double roots of θ either upwards or downwards until they hit an integer. Furthermore,

Mv,R(θ) is bounded below by (−1)R for θ with coefficient vector in CR, so there can be no rays in

CR which point in a direction which strictly decreases Mv,R.

Call two vertices of CR adjacent if the segment connecting them is a 1-dimensional face of CR.

For θ corresponding to a vertex of CR, the adjacent vertices correspond to the polynomials obtained

by moving just one root of θ from one positive integer to another positive integer. Considering the

cone around this vertex, which is defined by the R hyperplanes corresponding to the roots of θ, we

see that if Mv,R(θ) is not minimal, then there is some one dimensional face of CR which meets θ,

such that Mv,R strictly decreases as we move away from θ along this edge - so since this edge can’t

be an infinite ray, it must terminate in an adjacent vertex of CR.

Values of vR and the corresponding roots νi and sieve weights λn are given for some small R in

the following table.
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Algorithm 1 Find optimal θ, find vR
1: function Weights(R, ν1, ..., νd)
2: if R odd then . parity of R determines whether an upper or lower bound sieve
3: θ(n)← (1− n)

∏d
i=1(1− n

νi
)(1− n

νi+1 ) for n = 0, ..., R
4: else
5: θ(n)←

∏d
i=1(1− n

νi
)(1− n

νi+1 ) for n = 0, ..., R

6: λn ← θ(n) for n = 0, ..., R
7: for i = 0 to R do
8: for j = R to i+ 1 do
9: λj ← λj − λj−1

10: return (λ0, ..., λR)

11: function MainTerm(v, R, ν1, ..., νd)
12: (λ0, ..., λR)← Weights(R, ν1, ..., νd)

13: return ev
∑R
n=0

λn
n! v

n . alternatively, approximate this by
∑
n≤10(R+v)

θ(n)
n! v

n

14: function BestTheta(v, R)
15: d← bR2 c
16: νi ← 2i− 12|R for i = 1, ..., d
17: while ∃i ≤ d, ± ∈ {+,−} such that (−1)RMainTerm(v, R, ν1, ..., νi ± 1, ..., νd) > (−1)R

MainTerm(v, R, ν1, ..., νd) do
18: νi ← νi ± 1
19: while νi±1 = νi ± 1 do . push adjacent roots out of the way
20: i← i± 1
21: νi ← νi ± 1

22: return {ν1, ..., νd}
23: function vR(R) . assume R odd, otherwise decrease it by 1
24: d← R−1

2
25: νi ← 2i for i = 1, ..., d
26: v ← 0
27: while MainTerm(v, R, ν1, ..., νd) > 0 do
28: Increase v until MainTerm(v, R, ν1, ..., νd) = 0. . e.g. using Newton’s method
29: {ν1, ..., νd} ← BestTheta(v, R)

30: return v
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R vR ν1, ..., ν(R−1)/2 λ0, ..., λR

1 1 1,−1

3 2 3 or 4 1,−1, 5
6 ,−

1
2 or 1,−1, 7

10 ,−
3
10

5 3.11714 3, 7 1,−1, 0.91,−0.73, 0.46,−0.17

7 4.14377 3, 6, 11 1,−1, 0.94,−0.83, 0.67,−0.46, 0.24,−0.07

9 5.23808 3, 6, 10, 14 1,−1, 0.96,−0.88, 0.76,−0.61, 0.44,−0.26, 0.12,−0.03

11 6.29164 3, 6, 9, 13, 18 1,−1, 0.97,−0.91, 0.82,−0.71, 0.58,−0.43, 0.28,−0.15, ...

13 7.30904 3, 6, 9, 13, 17, 22 1,−1, 0.97,−0.93, 0.86,−0.76, 0.65,−0.52, 0.39,−0.26, ...

15 8.33758 3, 6, 9, 12, 16, 20, 25 1,−1, 0.98,−0.94, 0.88,−0.81, 0.72,−0.61, 0.50,−0.38, ...

17 9.31968 3, 6, 9, 12, 15, 19, 24, 29 1,−1, 0.98,−0.95, 0.90,−0.84, 0.76,−0.67, 0.57,−0.47, ...

19 10.3236 3, 6, 8, 11, 15, 18, 22, 27, 33 1,−1, 0.98,−0.96, 0.92,−0.87, 0.82,−0.75, 0.67,−0.58, ...

21 11.3495 3, 5, 8, 11, 14, 18, 22, 26, 31, 37 1,−1, 0.99,−0.97, 0.94,−0.91, 0.86,−0.81, 0.75,−0.68, ...

23 12.4042 3, 5, 8, 11, 14, 17, 21, 25, 29, 34, 41 1,−1, 0.99,−0.97, 0.95,−0.92, 0.88,−0.84, 0.78,−0.72, ...

25 13.4494 3, 5, 8, 11, 14, 17, 21, 24, 28, 33, 38, 44 1,−1, 0.99,−0.97, 0.95,−0.93, 0.89,−0.85, 0.81,−0.75, ...

201 102.22 3, 5, 7, 9, 12, 14, 16, 19, 21, 23, 26, ... ...

1001 ≈ 503.37 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, ... ...

2001 ≈ 1004 ... ...

Based on the numerical data, the following conjecture seems plausible.

Conjecture 2. In the model sifting problem, the optimal λns always satisfy

(−1)nλn ≥ 0

and

1 = |λ0| ≥ |λ1| ≥ · · · .

4.2.1 The combinatorial range, and coincidences at v = 1

It’s easy to see that for R fixed (and assuming that the parity of R is determined by whether we

are looking for an upper bound sieve or a lower bound sieve) v sufficiently small, the optimal sieve

is combinatorial - that is, it has θ(n) = 0 for n = 1, ..., R, with sieve weights given by λi = (−1)i for

i ≤ R. Thus there is some least v, possibly depending on R, such that the combinatorial sieve is no

longer optimal.

In a surprise twist, this crossover point always happens at v = 1 regardless of the value of R: we

have an infinite pileup of coincidences all occuring at one critical value. Before I prove this result,

note that in the original sifting problem it is conjectured that for κ ≤ 1 the best upper and lower

bound sieves are the β-sieves, which have λd ∈ {µ(d), 0} for all d. In the last chapter of this thesis,

I’ll strengthen the analogy further by generalizing the infinite pileup of coincidences at v = 1 from
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the model problem to an infinite pileup of coincidences all occuring at κ = 1 in the full sifting

problem.

Theorem 20. For R ∈ N and 0 ≤ v < 1, the polynomial θ of degree R which satisfies θ(0) = 1,

(−1)Rθ(n) ≥ 0 for n ∈ N+ and, given these constraints, minimizes the quantity

Mv,R(θ) = (−1)R
∑
n≥0

θ(n)

n!
vn

is the combinatorial polynomial

θ0(n) =

R∑
i=0

(−1)i
(
n

i

)
=

R∏
i=1

(
1− n

i

)
= (−1)R

(
n− 1

R

)
.

For R ≥ 2 and 1 < v < 2, the optimal θ is instead given by

θ1(n) =

R−2∏
i=1

(
1− n

i

)
·
(

1− n

R

)(
1− n

R+ 1

)
=

R−2∑
i=0

(−1)i
(
n

i

)
+ (−1)R−1

(
1− 1(

R+1
2

))( n

R− 1

)
+ (−1)R

R− 1

R+ 1

(
n

R

)
.

Proof. By Proposition 14, we just need to check that Mv,R(θ) can’t be decreased by moving just one

root of θ from its current position to another positive integer. First we focus on the range 0 ≤ v < 1.

Since 1, ..., R are already roots of θ, the only moves that can be made are moves that flip one of the

roots R− 1, R− 3, ... from its current value to R+ 1. Set

θk(n) =
1− n

R+1

1− n
R+1−2k

· (−1)R
(
n− 1

R

)
=

∏
1≤i≤R+1
i6=R+1−2k

(
1− n

i

)

for k = 0, ..., bR2 c. We just need to show that Mv,R(θ0) < Mv,R(θk) for each k ≤ R
2 when v < 1. We
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have

Mv,R(θk − θ0) = (−1)R
θk(R+ 1− 2k)

(R+ 1− 2k)!
vR+1−2k −

∑
n 6=R+1−2k

(
1−

1− n
R+1

1− n
R+1−2k

)(
n− 1

R

)
vn

n!

=
(2k)!

(R+ 1)!
vR+1−2k −

∑
n 6=R+1−2k

2kn

(R+ 1)(n−R− 1 + 2k)

(
n− 1

R

)
vn

n!

=
(2k)!

(R+ 1)!
vR+1−2k −

∑
n≥R+1

2k

(R+ 1)!(n−R− 1)!(n−R− 1 + 2k)
vn

=
vR+1

(R+ 1)!

(
(2k)!

v2k
−
∑
n≥0

2k

n!(n+ 2k)
vn

)

=
vR+1

(R+ 1)!

(2k)!

v2k
Mv,2k−1

(
n 7→

(
n− 1

2k − 1

))
=

evvR+1

(R+ 1)!

(2k)!

v2k

∑
n≤2k−1

(−v)n

n!
.

When v ≤ 1, pairing up the summands shows that
∑
n≤2k−1

(−v)n

n! ≥ 0, and that the inequality is

strict for k > 1.

Next, we consider the case 1 < v < 2. If we change just one root of θ1, we can make it into θk

for k = 0, 2, ..., bR2 c, or we can make it into θ′, which is given by

θ′(n) =

R−2∏
i=1

(
1− n

i

)
·
(

1− n

R+ 1

)(
1− n

R+ 2

)
.

We already know that Mv,R(θ1) < Mv,R(θ0) for v > 1. For k ≥ 2 we have

Mv,R(θk − θ1) =
evvR+1

(R+ 1)!

( (2k)!

v2k

∑
n≤2k−1

(−v)n

n!
− 2!

v2
(1− v)

)
,

and for k ≥ 3 and v < 2, by standard alternating series arguments we have

∑
n≤2k−1

(−v)n

n!
> e−v − v2k

(2k)!
> e−2 − 26

6!
> 0.

For k = 2, we need to check that

24

v4

(
1− v +

v2

2
− v3

6

)
>

2

v2
(1− v)

for v < 2, which is straightforward: the difference of the two sides is 2v−4(2− v)(3(2− v) + v2) > 0.

To finish, we just need to check that Mv,R(θ1) < Mv,R(θ′) for 1 < v < 2. Writing θ′ in the
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binomial basis, we get

θ′(n) =

R−2∑
i=0

(−1)i
(
n

i

)
+ (−1)R−1

(
1− R(

R+2
3

))( n

R− 1

)
+ (−1)R

R(R− 1)

(R+ 1)(R+ 2)

(
n

R

)
,

so

Mv,R(θ′ − θ1) = Mv,R

(
(−1)R

( R(
R+2

3

) − 1(
R+1

2

))( n

R− 1

)
+ (−1)R

( R(R− 1)

(R+ 1)(R+ 2)
− R− 1

R+ 1

)(n
R

))
= ev ·

( 2(R− 1)(
R+1

2

)
(R+ 2)

1

(R− 1)!
vR−1 − 2(R− 1)

(R+ 1)(R+ 2)

1

R!
vR
)

= ev · 2(R− 1)

(R+ 2)!
vR−1(2− v),

which is greater than 0 when v < 2.

4.2.2 Why is Selberg’s lower bound sieve so effective?

First we will describe the analogue of Selberg’s lower bound sieve in this setting.

Let R = 2d+ 1. In order to show that vR ≥ d+ 1, Selberg [28] finds the optimal θ of the form

θ(n) = (1− n)f(n)2.

If we write

f(n) =
∑
i

`i

(
n

i

)
,

and define yi,∆i by

yr = (−1)r
∑
i≥0

`r+i
i!

vi,

and ∆r = yr − yr+1, then we find that

e−v
∑
n≥0

(1− n)f(n)2

n!
vn =

∑
r

vr

r!
y2
r −

∑
r

vr+1

r!
∆2
r.

Since yr = ∆r + · · ·+ ∆d, we can apply Cauchy-Schwarz to see that

y2
r ≤ (d+ 1− r)(∆2

r + · · ·+ ∆2
d),
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with equality when the ∆s are all equal. Substituting this in, we see that

∑
r

vr

r!
y2
r −

∑
r

vr+1

r!
∆2
r ≤

∑
r

vr

r!
(d+ 1− r)(∆2

r + · · ·+ ∆2
d)−

∑
r

vr+1

r!
∆2
r

= (d+ 1− v)
∑
j

∆2
j

∑
r≤j

vr

r!
.

Thus we see that the Selberg lower bound sieve gives a nonnegative lower bound if and only if

v ≤ d + 1, and in particular that vR ≥ d + 1. Furthermore, when v = d + 1, the optimal sieve has

all ∆s equal. Thus we substitute yr � d+ 1− r, so

`r � (−1)r
d+1−r∑
i=0

d+ 1− r − i
i!

vi.

In order to normalize f(n), we need `0 = 1 (note, however, that the normalization doesn’t actually

matter if all we care about is whether we get a nonnegative lower bound). When r = 0 and v = d+1,

the right hand side of the above becomes

d+1∑
i=0

d+ 1− i
i!

(d+ 1)i =

d+1∑
i=0

(d+ 1)i+1

i!
− (d+ 1)i

(i− 1)!
=

(d+ 1)d+1

d!
,

so when v = d+ 1 we get

`r = (−1)r
d!

(d+ 1)d+1

d+1−r∑
i=0

d+ 1− r − i
i!

(d+ 1)i.

In the next few subsections, we’ll show that lim R
vR

= 2, and bounds the difference between vR

and bR+1
2 c between the square root and the cube root of R (up to constants). Based on the analogy

outlined earlier, this may be regarded as weak evidence for lim βκ
κ = 2, and possibly also as weak

evidence for 2κ− βκ � 3
√
κ.

Theorem 21. For R = 2d+ 1, we have 2
√
d ≥ vR − (d+ 1) ≥ (c+ o(1)) 3

√
d, where c ≈ 1

12.14 is the

positive solution of the equation∫ ∞
0

1

x3/2
min

(
sin2

(
(x3 + c)

√
x
)
, cos2

(
(x3 + c)

√
x
))

dx = 2πc.

From the upper bound on vR we can deduce a lower bound on the usual sifting limit βκ, improving

Selberg’s lower bound by a factor of 2.
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Corollary 3. If βκ is the sifting limit of a sieve of dimension κ ≥ 3, then

βκ >
2bκ−

√
κc+ 1

e
1+ 1√

κ

.

Proof. Suppose βκ < 2d + 3 for some d ∈ N. For any y, let P be the set of primes between y
1

2d+3

and y1/βκ . Then if we take v =
∑
p∈P

κ
p , we see that

v = (κ+ o(1)) log

(
2d+ 3

βκ

)
.

Since the product of any 2d + 3 primes from P is greater than y, if we can find a nontrivial lower

bound sieve then we must certainly have

κ log

(
2d+ 3

βκ

)
≤ v2d+2 = v2d+1 ≤ d+ 2

√
d+ 1.

Rearranging, we find that

βκ ≥
2d+ 3

e
d+2
√
d+1

κ

.

To finish, we take d = bκ−
√
κc − 1.

Upper bound on vR

Theorem 22. Let R = 2d+ 1. Then vR ≤ d+ 2
√
d+ 1.

Proof. Assume that d ≥ 1, since it is easy to check we have equality for d = 0. Since any optimal θ

takes the form (1− n)f(n)f(n− 1) for some polynomial f of degree d, it’s enough to show that for

v = d+ 2
√
d+ 1 and any polynomial f of degree d we have

∑
n≥0

(1− n)f(n)f(n− 1)

n!
vn ≤ 0.

Write

f(n) =

d∑
i=0

`i

(
n

i

)
.

Define yi,∆i, si by

yr = (−1)r
∑
i≥0

`r+i
i!

vi,

and ∆r = yr − yr+1, sr =
∑
i≥0 yr+i. Using the identity

(
n

a

)(
n

b

)
=
∑
k

k!

(k − a)!(k − b)!(a+ b− k)!

(
n

k

)
,
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we see that the variables yr diagonalize the quadratic form corresponding to the Selberg upper bound

sieve: ∑
n≥0

f(n)2

n!
vn = ev

∑
r

y2
r

r!
vr.

Since shifting the argument of f by ±1 has the effect of replacing the yrs with either the ∆rs or

the srs, we have

∑
n≥0

(1− n)f(n)f(n− 1)

n!
vn =

∑
n≥0

f(n)f(n− 1)

n!
vn − v

∑
n≥0

f(n+ 1)f(n)

n!
vn = ev

∑
r

vr

r!
yr(sr − v∆r).

Dividing by ev and rewriting this entirely in terms of the si, it becomes

∑
r

vr

r!
sr(sr − sr+1 − v(sr − 2sr+1 + sr+2) + r(sr−1 − 2sr + sr+1)).

Comparing this to
∑
r
vr+1

r! ∆2
r, we get

− 2
∑
r

vr

r!
sr(sr − sr+1 − v(sr − 2sr+1 + sr+2) + r(sr−1 − 2sr + sr+1))

=
∑
r

vr+1

r!
∆2
r +

∑
r

vr

r!

(
(v − r − 2)s2

r − 2(v − r − 1)srsr+1 + (v − r)s2
r+1

)
.

We just have to prove that the last sum above is nonnegative. Since sd+1 = 0, for any constant a

we have

∑
r

vr

r!

(
(v − r − 2)s2

r − 2(v − r − 1)srsr+1 + (v − r)s2
r+1

)
= as2

0 +
∑
r

vr

r!

(
(v − r − 2− a)s2

r − 2(v − r − 1)srsr+1 +

(
v − r + a

v

r + 1

)
s2
r+1

)
.

Thus it is enough to show that we can choose 0 ≤ a ≤ v − d− 2 satisfying

(v − r − 2− a)

(
v − r + a

v

r + 1

)
≥ (v − r − 1)2

for all r < d. It’s easy to see that it is enough to check this for r = d − 1, in which case it reduces

to the inequality

(v − d)2a ≥ va2 + (v + d)a+ d.

Taking a =
√

d
v and v = d+ 2

√
d+ 1, we get equality.
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Remark 1. Numerical calculations indicate that for large d the quadratic form

∑
r

vr

r!
yr(sr − v∆r)

is negative definite for v ≈ d +
√
d

2 + 1, so the above argument is probably not best possible. The

next result shows that the bounds we can get with this method can’t be improved too much further.

Theorem 23. For all d sufficiently large, if we take v = d+
√

d
11 + 1,

yr = d+ 1− r − 1√
2d

(
d+ 2− r

2

)
,

and define ∆r = yr − yr+1, sr =
∑d−r
i=0 yr+i, then we have

d∑
r=0

vr

r!
yr(sr − v∆r) > 0.

Proof. Generally, if we let k = v − (d+ 1) and take yr = d+ 1− r + a
(
d+2−r

2

)
, then after a lengthy

computation we find that

d∑
r=0

vr

r!
yr(sr − v∆r) =

(
d∑
r=0

vr

r!

)(
− 1

2
k(d+ k2 + 1)− 1

12

(
3(d+ 1)2 − 6k2(2d+ 1)− 5k4 + 16k(d+ 1)

)
a

+
1

12

(
3k(d+ 1)2 − k3(4d− 2)− k5 + 2(d+ 1)2 + 14k2(d+ 1)

)
a2

)

+
vd+1

d!

(
1

2
k(k − 1)− 1

12

(
7kd+ 5k2(k − 1)− 3(d+ 1) + 11k

)
a

− 1

12

(
d(4d+ 21)− k2(3d− 1)− k4 + 13k(d+ 1) + k3 − 13

)
a2

)
.

If k is within a constant factor of
√
d, we have the approximation

d!

vd

d∑
r=0

vr

r!
= Γ(d+ 1, v)v−dev = erfc

(
k√
2d

)
e
k2

2d

√
πd

2
+O(1).

Plugging in d = 11k2 and a = − 1
k
√

22
and expanding everything to first order in k, we get the

theorem.

Remark 2. The preceding Theorem should be seen as a limitation of our method of producing upper

bounds, rather than an indication that vR − (d + 1) �
√
d. Numerical calculations show that the

roots of the corresponding polynomial f are almost equal to the roots of the polynomial Selberg
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constructed to show vR ≥ d + 1, except that the smallest root is approximately 5
2 instead of being

approximately 3. It appears that this change to the smallest root alone accounts for most of the

improvement to v, and it is only permitted since we have relaxed the condition that θ(n) ≤ 0 for

positive integers n to the much less restrictive condition that the roots of θ come in pairs that differ

by at most 1.

It would be interesting to see if better upper bounds on vR could be produced by incorporating

the constraint that for every k the kth root of f is at least 2k + 1 (using the result of the next

section).

Lower bound on vR

Recall that when v = d+ 1, the Selberg lower bound sieve corresponds to taking θ of the form

θ(n) = (1− n)f(n)2,

where f is an arbitrary degree d polynomial with f(0) = 1, chosen to minimize

Mv,R(θ) = −
∑
n≥0

θ(n)

n!
(d+ 1)n,

and that the optimal choice for f is given by

f(n) =

n∑
i=0

`i

(
n

i

)

with

`r = (−1)r
d!

(d+ 1)d+1

d+1−r∑
i=0

d+ 1− r − i
i!

(d+ 1)i.

We want to describe the behavior of the roots ν1, ..., νd of f(n) =
∑
i `i
(
n
i

)
as d gets large, so

that we can determine the effects of rounding them to the nearest integer values.

Proposition 15. The roots ν1, ..., νd of f are all real, positive, and greater than 2. For any integer

n, the closed interval [n, n+ 1] contains at most one root νi.

Proof. These will all follow from the fact that f is chosen to minimize Mv,R(θ). If f had a negative

real root, then replacing it with any positive root would decrease Mv,R(θ) (since doing this would

decrease |θ(n)| for all n ∈ N+). Similarly, if f had a pair of complex conjugate roots, then replacing

them by their real parts would decrease Mv,R(θ). If f has a positive root νi ≤ 2, then increasing

it by a tiny amount ε decreases some |θ(n)| by an amount proportional to ε, and at most increases

|θ(2)| by an amount proportional to ε2, so if ε is small enough then increasing νi to νi + ε decreases

Mv,R(θ). Finally, if there is an integer n such that the interval [n, n + 1] contains two roots νi, νj ,
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then if we increase their sum νi + νj by ε while keeping their product νiνj constant, then we will

decrease |θ(m)| by an amount proportional to ε for all m ∈ N+ with m 6= n, n + 1, and we will at

most increase |θ(n)|, |θ(n + 1)| by an amount proportional to ε2, so if ε is small enough the overall

effect is to decrease Mv,R(θ).

Corollary 4. If n is an integer with f(n)f(n+ 2) < 0, then the interval (n, n+ 2) contains exactly

one root νi, and whether νi is above or below n+ 1 is determined by the sign of f(n+ 1).

Remark 3. Numerical calculations indicate that if we sort the roots ν1, ..., νd of f , we even have

νi+1 > νi + 2 for every i. More detailed information about the roots of f can be found in the

appendix.

Proposition 16. Let n be a nonnegative integer. Then

f(n+ 2) =
∑
k

(−1)k

(d+ 1)k+1
k!

(
d

k

)(
n

k

)
.

Proof. Recall that we had

`r = (−1)r
d+1−r∑
i=0

yr+i
i!

(d+ 1)i,

with the yr = d!
(d+1)d+1 · (d+ 1− r) in an arithmetic progression.

Every time we shift the argument of f by 1, we replace the yrs with their differences. Since the

yrs are linear, after shifting the argument of f twice all but the last of them is 0, which gives us

f(n+ 2) =
d!

(d+ 1)d+1

∑
k

(−1)k

(d− k)!
(d+ 1)d−k

(
n

k

)
.

Rearranging this finishes the proof.

Proposition 17. Let a(n, k) be the number of permutations of an n-set having exactly k cycles of

size greater than 1. Then for n a nonnegative integer we have

f(n+ 2) =
1

(d+ 1)n+1

∑
k

(−1)ka(n, k)dk.

In particular, f(n+ 2) is positive for large d if and only if bn2 c is even.

More generally, define aq(n, k) by

aq(n, k) =
∑
l

(
n

l

)
c2(n− l, k)ql,

where c2(m, k), an associated signless Stirling number of the first kind, is defined to be the number

of derangements of an m-set having exactly k cycles of size greater than 1 (so that a(n, k) = a1(n, k)
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and c2(n, k) = a0(n, k)). Then we have

∑
j

(−1)j(d+ q)n−jj!

(
d

j

)(
n

j

)
=

n!

2πi

∫
C

e(d+q)z(1− z)d dz

zn+1

=
∑
k

(−1)kaq(n, k)dk,

where C is any contour winding counterclockwise around 0.

Proof. To prove the identity

∑
j

(−1)j(d+ q)n−jj!

(
d

j

)(
n

j

)
=

n!

2πi

∫
C

e(d+q)z(1− z)d dz

zn+1

we just need to evaluate the nth derivative, with respect to z, of e(d+q)z(1− z)d at z = 0. Using the

Leibniz rule we see that this is precisely the left hand side.

Now suppose that C is a circle of radius less than 1. Then we may use the power series for

log(1− z) to see that

n!e(d+q)z(1− z)d = n! exp

(
qz − dz

2

2
− dz

3

3
− · · ·

)
=

∑
`1,`2,...≥0

z
∑
j j`j

n!∏
j j
`j `j !

q`1(−d)
∑
j≥2 `j .

Writing l = `1, k =
∑
j≥2 `j , and interpreting `j as the number of cycles of length j in a permutation,

we see that the zn-coefficient of this series is precisely

∑
k,l

(
n

l

)
c2(n− l, k)ql(−d)k =

∑
k

(−1)kaq(n, k)dk.

For any v ≥ d+ 1, we define the polynomial fv by

fv(n) =
∑
r

`v,r

(
n

r

)
,

where

`v,r = (−1)r
d!

vd+1

d+1−r∑
k=0

d+ 1− r − k
k!

vk,

as in Selberg’s construction.

Proposition 18. For q = v − d�
√
d, we have

fv(0) = 1− q − 1

v

d!

vd

∑
r

vr

r!
= 1− q − 1

v
Γ(d+ 1, v)v−dev � 1
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as well as

∑
n

(1− n)fv(n)2

n!
vn = −ev d!

vd+1
(q − 1)fv(0) = −(

√
2π + o(1))e

q2

2d
q − 1√
d
fv(0).

Furthermore, for every nonnegative integer n we have

d

dv

(
vn+1fv(n+ 2)

)
= nvnfv(n+ 1)

and

fv(n+ 2) =
n!

2πi

∫
C

evz(1− z)d dz

zn+1

=
1

vn+1

∑
k

(−1)kaq(n, k)dk,

where C is any contour winding counterclockwise around 0.

Proof. The first two claims are straightforward calculations. For the last two claims, we use an

analogous argument to the proof of Proposition 16 to see that

fv(n+ 2) =
1

vn+1

∑
j

(−1)jvn−jj!

(
d

j

)(
n

j

)
.

Multiplying by vn+1 and differentiating each term of the sum with respect to v we get the claim

about the derivative of vn+1fv(n + 2) with respect to v. The last claim follows from Proposition

17.

In the appendix, I prove that the coefficients aq(n, k) are log-concave in k, and use this fact to

prove several explicit bounds on connected to f and fv. Alternatively, we can get bounds of the same

quality with less work by using the saddle point method to estimate the integral
∫
C
evz(1− z)d dz

zn+1 .

Either way, we can prove the following bound.

Theorem 24. If n, q, d ≥ 1 with 4(n+ q)2 ≤ d, and if v = d+ q, then we have

v(n+2)/2fv(n+ 2) =
n!en/2√
πn(n+1)/2

Re
(
i−n exp

(
i(n3 + q)

√
n
v +O( n+q√

nv
)
))

e
q2

4v .

In particular, when n is even, n, q �
√
v, and (n3 + q)

√
n
v has distance � 1√

n
from the nearest

odd multiple of π
2 , fv has a real root ν between n and n + 2. Similarly if n is odd, n, q �

√
v, and

(n3 + q)
√

n
v has distance � 1√

n
from the nearest multiple of π, fv has a real root ν between n and

n+ 2.

Proof. This is proved in the first appendix, using the saddle point method (see Theorem 43).
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Theorem 25. If R = 2d+ 1 then vR − d ≥ (c+ o(1)) 3
√
d, where c ≈ 1

12.14 is the positive solution of

the equation ∫ ∞
0

1

x3/2
min

(
sin2

(
(x3 + c)

√
x
)
, cos2

(
(x3 + c)

√
x
))

dx = 2πc.

Proof. It’s easy to see that for any positive real root ν of fv, we can find a quadratic polynomial q

such that q(0) = 1,

0 ≤ q(n) ≤
(

1− n

νk

)2

for n ∈ N, and at least one of q(bνc), qk(dνe) is 0: for instance, we can take

q(n) =
(

1− n

ν

)2

−min

(
1

bνc

(
1− bνc

ν

)2

,
1

dνe

(
1− dνe

ν

)2
)
n.

Thus, there exists a polynomial θv of degree R such that θv(0) = fv(0)2,

0 ≥ θv(n) ≥ (1− n)fv(n)2

for n ∈ N+, and such that for any positive real root ν of fv at least one of θv(bνc), θv(dνe) vanishes.

Thus, we have

∑
n

θv(n)

n!
vn ≥

∑
n

(1− n)fv(n)2

n!
vn +

∑
fv(ν)=0

ν∈R+

min

(
(bνc − 1)fv(bνc)2

bνc!
vbνc,

(dνe − 1)fv(dνe)2

dνe!
vdνe

)
.

Set v = d+ q with q = (c+ o(1)) 3
√
d, and let νj be the jth positive root of fv. By the previous

Theorem, for j �
√
v we have

νj ≈ 2j + 1 + 2
π ( 2j

3 + q)
√

2j
v = 2j +O(

√
j).

Let Fv(n) be defined by

Fv(n) =
(n− 1)fv(n)2

n!
vn.

Applying the previous Theorem, we get

min (Fv(bνjc), Fv(dνje)) ≈
e
q2

2v

2
√
πj3

min

(
sin2

(
( 2j

3 + q)
√

2j
v

)
, cos2

(
( 2j

3 + q)
√

2j
v

))
,

while from Proposition 18 we have

∑
n

(1− n)fv(n)2

n!
vn ≈ −

√
2πe

q2

2v
q√
v
.
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Thus, we just need

∑
j≥1

1

2
√
πj3

min

(
sin2

(
( 2j

3 + q)
√

2j
v

)
, cos2

(
( 2j

3 + q)
√

2j
v

))
&
√

2π
q√
v
.

Writing 2j = x 3
√
v, q = c 3

√
v and approximating the sum by an integral, this becomes∫ ∞

0

1

x3/2
min

(
sin2

(
(x3 + c)

√
x
)
, cos2

(
(x3 + c)

√
x
))

dx ≥ 2πc.

What does the optimal lower bound polynomial θ look like?

First we show that 2 is not a root of the optimal θ when v = vR.

Theorem 26. Let θ be the polynomial of degree R with θ(0) = 1 and θ(n) ≤ 0 for all positive

integers n. Suppose that θ(2) = 0 and that

∑
n

θ(n)

n!
vn ≥ 0.

Then there is another polynomial θ2 of degree R with θ2(0) = 1, θ2(n) ≤ 0 for all positive integers

n, θ2(2) < 0, and ∑
n

θ2(n)

n!
vn > 0.

Proof. Assume without loss of generality that θ is of the form

θ(n) = (1− n)
∏
i

(
1− n

νi

)(
1− n

νi + 1

)

for νi positive integers with ν1 = 2, νi+1 ≥ νi + 2. Let 2k be the first integer which is not a root of

θ (it is necessarily even). Define θ2 by

θ2(n) =
n− 2k

k(n− 2)
θ(n).

Then we have

∑
n

θ2(n)

n!
vn ≥ 1 +

θ2(2)

2
v2 +

1

k

∑
n>2k

θ(n)

n!
vn ≥ 1 +

θ2(2)

2
v2 − 1

k

(
1 +

θ(2k)

(2k)!
v2k

)
.

We claim that
|θ(2k)|
(2k)!

>

(
|θ2(2)|

2

)k
.
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Since for any ν > 2k we have

1− 2k

ν
<

(
1− 2

ν

)k
,

we just need to show that∣∣∣∣1− 2k

2

∣∣∣∣ ∣∣∣∣1− 2

2k

∣∣∣∣−k ∏
ν 6=2,2k

∣∣∣∣1− 2k

ν

∣∣∣∣ ∣∣∣∣1− 2

ν

∣∣∣∣−k ≥ (2k)!

2k
,

but in fact the left hand side is a telescoping product which is precisely equal to the right hand side.

Thus

1 +
θ2(2)

2
v2 − 1

k

(
1 +

θ(2k)

(2k)!
v2k

)
> 1− |θ2(2)|

2
v2 − 1

k

(
1−

(
|θ2(2)|

2
v2

)k)
> 0.

Based on the analysis in the previous section, it seems likely that the roots of the optimal θ are

approximately the same as what we get by rounding the roots of the function fv up and down to

the nearest integers, and that additionally most of the improvement comes from rounding the small

roots - rounding the large roots seems to have little impact. Since the jth root νj of fv satisfies

νj ≈ 2j + 1 + 2
π ( 2j

3 + q)
√

2j
v

for j �
√
v, we get 2j + 1 ≤ νj ≤ 2j + 2 for j ≤ 3

√
v. Thus, for large R there should exist a nearly

optimal sieve of the form

θ(n) = (1− n) ·
3
√
vR∏

j=1

(
1− n

2j+1

)(
1− n

2j+2

)
· p(n)2,

where p is a real polynomial with p(0) = 1 and all roots of p larger than 3
√
vR (note that 2 is the

only small natural number which is not a root of the above product). This prediction matches the

numerical data fairly well.

4.3 Stick-breaking

4.3.1 Stick-breaking process and the Dickman function

In the stick-breaking process (aka the Poisson-Dirichlet process - see [4] and [19] for more details

and a more rigorous treatment of the material in this section), we begin with a stick of length 1, and

cut it at a (uniformly) random location into two pieces. One piece is set aside, and the other piece

is again cut at a (uniformly) random location, and so on, until we’ve set aside an infinite sequence

of pieces whose sizes add up to 1. More formally, we might define it as follows.
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Definition 7. The sequence of random variables (x1, x2, ...) is distributed according to the stick-

breaking process if for each n, when we condition on the values of x1, ..., xn−1, xn is uniformly

distributed between 0 and 1− (x1 + · · ·+ xn−1).

A nice property of the stick-breaking process is the following rearrangement principle, which I

think of as saying that the chance of a given piece of the stick being the first piece in the sequence

is proportional to its size.

Proposition 19. Let (x1, ...) be distributed according to the stick-breaking process, and define in-

tervals I1, ... by I1 = [0, x1), I2 = [x1, x1 + x2), ... so that the length of In is xn. If a is a uniformly

random point in the interval [0, 1) (independent of the stick-breaking process), then the length of the

interval In which contains a is uniformly distributed between 0 and 1.

Proof. Let f(u) be the probability that the length of the interval In which contains a is at most u.

By splitting into cases based on whether a ∈ I1 or a 6∈ I1, we see that

f(u) =

∫ 1

0

x11x1≤u + (1− x1)f( u
1−x1

)dx1.

Since f( u
1−x1

) is 1 when 1− x1 ≤ u, this can be simplified to

f(u) = u2

2 + u2

2 +

∫ 1−u

0

(1− x1)f( u
1−x1

)dx1

= u2 +

∫ 1

u

u2

v3
f(v)dv.

It’s easy to check that f(u) = u (for 0 ≤ u ≤ 1) solves the above. To see that this solution is unique,

we apply the contraction mapping principle on L1([0, 1]):∫ 1

0

|f(u)− u|du =

∫ 1

0

∣∣∣ ∫ 1

u

u2

v3
(f(v)− v)dv

∣∣∣du
≤
∫ 1

0

∫ 1

u

u2

v3
|f(v)− v|dv du

=
1

3

∫ 1

0

|f(v)− v|dv,

so
∫ 1

0
|f(u)− u|du must be 0.

We’ll mostly be interested in the distribution of the sizes of the largest pieces of the stick.

Definition 8. We define the Dickman function ρ(u) to be the probability that all of the pieces of

the stick in the stick breaking process have size at most 1
u .
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Proposition 20. The Dickman function satisfies the identities

ρ(u) =
1

u

∫ u

u−1

ρ(t)dt

and

uρ′(u) = −ρ(u− 1).

For any u ≥ 0, we have the bound ρ(u) ≤ 1
buc! .

Proof. Let (x1, ...) be distributed according to the stick-breaking process. Since 1
1−x1

· (x2, ...) is

then also distributed according to the stick-breaking process, we have

ρ(u) =

∫ 1/u

0

ρ((1− x1)u)dx1.

Making the change of variables t = (1−x1)u gives the first identity. Differentiating the first identity

with respect to u gives the second identity.

Since ρ is decreasing, we have

ρ(u) =
1

u

∫ u

u−1

ρ(t)dt ≤ 1

u
· ρ(u− 1),

so the bound ρ(u) ≤ 1
buc! follows by induction on buc.

One crucial computation we’ll need later is the following.

Proposition 21. We have ∫ ∞
0

ρ(u)du =

∫ ∞
0

uρ(u)du = eγ ,

where γ = 0.57721... is the Euler-Mascheroni constant.

Proof. Since ρ decays so rapidly, its Laplace transform

L(t) =

∫
e−tuρ(u)dt

is entire. Multiplying by t and integrating by parts, we get

tL(t) = −
∫
ρ(u)de−tu

=

∫
e−tuρ′(u)du

= −
∫
e−tu

ρ(u− 1)

u
du.
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Differentiating both sides with respect to t, we get

d

dt
(tL(t)) =

∫
e−tuρ(u− 1)du

= e−tL(t).

Dividing both sides by tL(t), we get

d

dt
log(tL(t)) =

e−t

t
.

Since ρ(u) is 1 for 0 ≤ u ≤ 1 and is at most 1 for u ≥ 1, we have

lim
t→∞

tL(t) = lim
t→∞

t

∫ 1

0

e−tudu = lim
t→∞

t

∫ ∞
0

e−tudu = 1.

Thus, we have

log(tL(t)) = −
∫ ∞
t

e−x

x
dx,

so

L(t) =
1

t
exp

(
−
∫ ∞
t

e−x

x
dx
)

= exp
(∫ 1

t

1− e−x

x
dx−

∫ ∞
1

e−x

x
dx
)
.

Taking t = 0, we get ∫
ρ(u)du = L(0) = exp

(∫ 1

0

1− e−x

x
dx−

∫ ∞
1

e−x

x
dx
)
.

We need to show that the expression inside the integral is γ. A quick way to do this is to write

1 +
1

2
+ · · ·+ 1

n
=

∫ 1

0

1 + x+ · · ·+ xn−1dx

=

∫ 1

0

1− xn

1− x
dx

=

∫ 1

0

1− (1− x)n

x
dx

=

∫ n

0

1− (1− x
n )n

x
dx,

so

1 +
1

2
+ · · ·+ 1

n
− log(n) =

∫ 1

0

1− (1− x
n )n

x
dx−

∫ n

1

(1− x
n )n

x
dx.
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Taking the limit as n→∞, we get

γ =

∫ 1

0

1− e−x

x
dx−

∫ ∞
1

e−x

x
dx.

To prove the formula for
∫
uρ(u)du, we use the identity uρ(u) =

∫ u
u−1

ρ(t)dt to get

∫ ∞
0

uρ(u)du =

∫ ∞
0

∫ u

u−1

ρ(t)dt du

=

∫ ∞
−1

ρ(t)

∫ t+1

max(0,t)

du dt

=

∫
ρ(t)dt = eγ .

Random permutation model

Proposition 22. If σ is a random permutation of {1, ..., n}, then the size of the cycle of σ which

contains 1 is uniformly distributed between 1 and n.

From this we see that if we normalize the sizes of the cycles of a random permutation σ ∈ Sn
by dividing them by n (and sort the cycles in order of the least element of {1, ..., n} appearing in

them), we get a discretized version of the stick-breaking process.

Corollary 5. As n→∞, the probability that a random permutation of {1, ..., n} has all of its cycles

of size at most n
u approaches ρ(u).

Prime factorization model

Let n be a random large number - chosen uniformly randomly from some large dyadic interval [y, 2y)

- with prime factorization n = p1 · · · pk. Define xi = log(pi)
log(n) , so that

∑
xi = 1. I claim that in the

limit, the unordered collection of the xis have the same distribution as the unordered stick-breaking

process. In order to approach this claim, we can apply Proposition 19 to reintroduce the ordering

- so we assume that the ordering of the pis is randomized such that the chance of a given prime p

dividing n being first is equal to log(p)
log(n) , and so on.

We need to check that log(p1) is approximately uniformly distributed between 0 and log(n), and

that the remaining prime factors follow a similar distribution. I’ll do this by turning the problem

around: instead of starting with a random n, we start with p1 and m = n
p1

, with p1 a random

prime whose logarithm is (roughly) uniformly distributed between 0 and log(y), and m a number

chosen uniformly at random from the interval [ yp1
, 2y
p1

), and check that the product p1m is uniformly

distributed in [y, 2y). The key calculation is that for any z, we have

∑
p<z

log(p)

p
≈ log(z),
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so if we choose p1 = p with probability log(p)
p log(y) then log(p1) is roughly uniformly distributed between

0 and log(y), and for a given n ∈ [y, 2y) the probability that p1m = n is then about

∑
p|n

log(p)

p log(y)
· p
y

=
log(n)

y log(y)
≈ 1

y
.

From the above, we expect that the proportion of x-smooth numbers (that is, numbers having

all divisors at most x) having size about y should be about ρ( log(y)
log(x) ). In fact, the following very

precise bound for the number of x-smooth numbers has been proved by Hildebrand.

Theorem 27 (Hildebrand [12]). If y = xs with y ≥ 3 and

1 ≤ s ≤ log(y)

log(log(y))
5
3 +ε

with ε > 0, then

#{n ≤ y | n is x-smooth} = yρ(s)
(

1 +Oε

(s log(s+ 1)

log(y)

))
.

We can use this to quickly estimate the product
∏
p<z(1−

1
p ). The calculation goes as follows.

∏
p<z

(1− 1
p )−1 =

∑
n z-smooth

1

n

≈
∫ ∞

1

ρ( log(y)
log(z) )

y
dy

=

∫ ∞
0

ρ( log(y)
log(z) )d log(y)

= eγ log(z).

4.3.2 General process, colored permutations

We’ll motivate the general stick-breaking process by starting with a permutation model.

Definition 9. If κ is a whole number, then we say that (π, c) is a κ-colored permutation on n letters

if π is a permutation of {1, ..., n} and c : {1, ..., n} → {1, ..., κ} is a compatible coloring of {1, ..., n}
(i.e. c(i) = c(π(i)) for all i).

Proposition 23. The number of κ-colored permutations on n letters is

κ(κ+ 1) · · · (κ+ n− 1).

If (π, c) is chosen uniformly randomly from the set of all κ-colored permutations on n letters, then
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the probability that the cycle of π which contains 1 has size j is

κ

n

(n− j + 1) · · · (n− j + κ− 1)

(n+ 1) · · · (n+ κ− 1)
≈ κ

n
(1− j

n )κ−1.

Based on this, the general stick-breaking process is defined as follows.

Definition 10. The sequence of random variables (x1, x2, ...) is distributed according to the general

stick-breaking process with parameter κ if for each n, when we condition on the values of x1, ..., xn−1,

the fraction xn
1−(x1+···+xn−1) is randomly distributed on [0, 1] according to the distribution Beta(1, κ),

which has probability density function t 7→ κ(1− t)κ−1.

The reader can check that the general stick-breaking process satisfies an analogue of Proposition

19 for any positive κ. From the general stick-breaking process, we get the following generalization

of the Dickman function.

Definition 11. For κ > 0, we define the generalized Dickman function ρκ(s) to be the probability

that all of the pieces of the stick in the general stick-breaking process with parameter κ have size at

most 1
s .

Proposition 24. For s < 0 we have ρκ(s) = 0, for 0 < s ≤ 1 we have ρκ(s) = 1. For all s, we

have the identities

sκρκ(s) =

∫ s

s−1

ρκ(t)dtκ

and

sκρ′κ(s) = −κ(s− 1)κ−1ρκ(s− 1).

For s ≥ 0, we have the bound ρκ(s) ≤ κbsc

bsc! .

An analogous prime factorization model can be given as follows. We consider the set of integers

n in a large dyadic interval [y, 2y), and we weight them according to the size of τκ(n), which is

the number of ways of writing n as a product of κ whole numbers when κ ∈ N+. Then we write

n = p1 · · · pk, where the chance of a given prime p dividing n coming first is equal to log(p)
log(n) , and set

xi = log(pi)
log(n) .

Finally, we have the following important computation.

Proposition 25. For any κ ≥ 0, we have∫ ∞
0

ρκ(s)dsκ = eγκΓ(κ+ 1).

Proof. Define Lκ(t) by

Lκ(t) =

∫
e−stρκ(s)dsκ.
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Similarly to Proposition 21, we find that

d

dt
log(tκLκ(t)) =

κe−t

t
,

and

lim
t→∞

tκLκ(t) =

∫ ∞
0

e−sdsκ = Γ(κ+ 1),

so

Lκ(t) =
Γ(κ+ 1)

tκ
exp

(
−
∫ ∞
t

κe−s

s
ds
)
.

Taking t = 0, we get ∫ ∞
0

ρκ(s)dsκ = Lκ(0) = Γ(κ+ 1)eγκ.

4.3.3 Toy counting problem: flexible numbers and permutations

Definition 12. A natural number n is y-flexible if for all 1 ≤ x ≤ y there are natural numbers a, b

with n = ab such that a ≤ x and b ≤ y
x .

Flexible numbers are convenient in the context of analytic number theory (see, for instance, [15]

and Section 12.7 of [8]). So, it’s natural to wonder how common they are:

Problem 10. How many y-flexible numbers are there, as a function of y?

There is a convenient analogue of flexible numbers in the permutation setting.

Definition 13. A permutation σ ∈ Sn is flexible if for all 0 ≤ m ≤ n there is a subset M ⊆ {1, ..., n}
with |M | = m such that σ(M) = M .

We have an analogous counting problem:

Problem 11. How many flexible permutations are there on n letters, as a function of n?

For n = 1, ..., 6 the number of flexible permutations on n letters are, respectively, 1, 1, 4, 7, 46, 221

(surprisingly, this sequence doesn’t seem to show up on OEIS).

As a first step, we have the following equivalent definition of flexibility.

Exercise 1. Suppose σ ∈ Sn has cycles of sizes c1 ≤ c2 ≤ · · · ≤ cm (including 1-cycles), so that∑m
i=1 ci = n. Then σ is flexible if and only if, for each 1 ≤ i ≤ m, we have

1 +
∑
j<i

cj ≥ ci.

In particular, σ is flexible if and only if 2cm ≤ n+ 1 and deleting the largest cycle from σ produces

a flexible permutation on n− cm letters.
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If you want to spoil the solution, essentially the same fact is proved in Proposition 48. Defining

u(k, n) to be

u(k, n) =
1

n!
{σ ∈ Sn | σ is flexible, with all cycles of size ≤ k},

we get the recurrence

u(k, n) =
∑

0≤m≤bn+1−k
k c

1

kmm!
u(k − 1, n−mk).

In particular, when 2k ≤ n+ 1 this gives us

1

k
u(k − 1, n− k) ≤ u(k, n)− u(k − 1, n) ≤ 1

k
u(k, n− k).

The above recurrence is a near-perfect discretization of the differential-difference equation

∂

∂x
u(x, y) =

 1
xu(x, y − x) y > 2x,

0 y < 2x.
(u)

This differential-difference equation has a “scale-invariance” property: if u(x, y) is a solution, then

so is u(λx, λy) for any λ > 0. This property makes the long-term behavior very robust to errors

due to discretization: as x and y increase, we can rescale the coordinates back down, which has the

effect of shrinking the mesh of our discretization.

We make the following guess for the long term asymptotics of u(x, y):

u(x, y) ≈
f( yx )

yα
,

where f ≥ 0 and f decays rapidly at infinity, and α > 0. This leads to a single-variable differential-

difference equation satisfied by f :

−sf
′(s)

sα
=


f(s−1)
(s−1)α s > 2,

0 s < 2.

Playing around with this, we see that when α is too large, f changes sign occasionally: after rescaling

to make f(1) = 1, we get

f(s) = 1−
∫ s

t=2

tα−1

(t− 1)α
f(t− 1)dt,

and in particular

f(3) = 1−
∫ 3

t=2

tα−1

(t− 1)α
dt,

so f(3) < 0 when α ≥ 1.7. Presumably, when α is too small f will fail to decay sufficiently rapidly

at infinity.
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Time to cheat. Numerically, going back to the permutation case, we have

u(10, 10) ≈ 1.87306× 10−1,

u(100, 100) ≈ 2.2231× 10−2,

u(103, 103) ≈ 2.2746× 10−3,

u(104, 104) ≈ 2.27972× 10−4,

u(105, 105) ≈ 2.28023× 10−5.

This suggests taking α = 1. By some miracle, when α = 1 we have the exact solution

f(s) =

ρ(s− 1) s > 1,

1 s ≤ 1.

So we conjecture the long-term asymptotics

u(x, y) �
ρ( yx − 1)

y
.

This leaves the natural question: how do we get our hands on the constant of proportionality in

the above asymptotic? Since the asymptotic might take quite a while to kick in, simply comparing

the two sides for various choices of x, y doesn’t seem like a good approach, especially if we want

error bounds. Instead, we will use the following conservation law, which is fairly guessable once you

know what to look for (this type of conservation law is closely connected to the adjoint equations

that appear in the theory of differentiable-difference equations - for the theory of adjoint equations,

see Appendix B of [8], [13], or [31]).

Proposition 26. If u(x, y) satisfies (u), then the value of integral∫ ∞
y=x

y − x
x

u(x, y)dy

is independent of x.

In fact, using the above conservation law, we can see that the only possible value for α is 1. Since∫ ∞
s=1

(s− 1)ρ(s− 1)
ds

s
= eγ − 1,

our asymptotic becomes:

u(x, y) ≈

(∫∞
y=c

(y − c)u(c, y)dy

(eγ − 1)c

)
ρ( yx − 1)

y
,
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for c any constant greater than 0.

Now we come back to the problem of estimating the number of flexible permutations. According

to the above analysis, the proportion of flexible permutations on n letters should grow like

u(n, n) ≈ C ·
ρ(nn − 1)

n
=
C

n
,

and the constant of proportionality C should satisfy∑
n>k(n− k)u(k, n)

(eγ − 1)k
< C <

∑
n≥k(n+ 1− k)u(k, n)

(eγ − 1)k
,

since the left side increases and the right side decreases as k increases, and in the limit they are both

equal to C. When k = 1, we get 1.28029 < C < 3.4802. When k = 10, we get 2.11614 < C < 2.39521.

When k = 100, we get 2.26265 < C < 2.29171. When k = 1000, we get 2.27851 < C < 2.28144.

An analogous analysis should show that the number of y-flexible numbers is proportional to
y

log(y) , and that more generally we have

#{x-smooth y-flexible numbers} � ρ
(

log(y)

log(x)
− 1

)
y

log(y)

with a computable constant of proportionality - but in order to get the error bounds on the constant,

we will probably need to use explicit forms of the prime number theorem.

4.4 True size of the sifted interval

In the case κ = 1 and A = [1, y], the size of S([1, y], z) can be computed explicitly. Before computing

the true size, let’s compute the näıve guess for its size:

S([1, y], z) ≈
∏
p<z

(1− 1
p ) · y ≈ y

eγ log(z)
.

When log(y)
log(z) is large, this approximation is accurate (by the Fundamental Lemma of sieve theory).

However, when log(y)
log(z) is smaller, this guess is off by a constant factor.

Proposition 27 (Lemma 12.1 of [8] and surrounding remarks). If s > 1 is fixed, then if y = zs and

z →∞ we have

S([1, y], z) = (ω(s) + o(1))
y

log(z)
,

where ω(s) solves the differential-difference equation

s > 2 =⇒ d

ds
(sω(s)) = ω(s− 1)
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and has the initial condition

1 ≤ s ≤ 2 =⇒ sω(s) = 1.

For s large, we have ω(s) = e−γ + O(s−s), and ω(s)− e−γ changes sign in every interval of length

1.

The function ω(s) is called the Buchstab function.



Chapter 5

Selberg’s sieve

Recall that there are two perspectives on any collection of sieve weights: the weights λd themselves,

and the associated function θ given by

θ(d) =
∑
k|d

λk.

To check that the weights form a valid sieve, one checks that θ(d) ≥ 0 (for an upper bound sieve)

or θ(d) ≤ 0 for d | Pz, d ≥ 1 (for a lower bound sieve). To check that the error term is manageable,

one checks that the weights λd are supported on d ≤ y and are not too large. In the case of the

model problem, we think of the λds as coefficients (in the binomial basis) of a polynomial θ, which

naturally suggests that we should try taking θ to be a square in order to get a good upper bound

sieve.

The Selberg upper bound sieve corresponds to choosing (λ, θ) such that

θ(d) = θ′(d)2

for some sieve (`, θ′) with `d supported on d ≤ √y, and chosen such that θ(1) = θ′(1) = 1. In other

words, we have

θ(d) =
(∑
k|d

`d

)2

.

Solving for the λds, we get

λd =
∑

[d1,d2]=d

`d1
`d2
,

where [d1, d2] is the least common multiple of d1 and d2.

72



CHAPTER 5. SELBERG’S SIEVE 73

The main term of the resulting sieve is

∑
d|Pz

λdκ(d)

d
=

∑
[d1,d2]=d
d1,d2≤

√
y

`d1
`d2

κ(d)

d

=
∑

d1,d2≤
√
y

`d1
κ(d1)

d1

`d2
κ(d2)

d2

(d1, d2)

κ((d1, d2))
.

Our goal is to optimize this quadratic form in the `ds, subject to the linear constraint `1 = 1. At

this point, the reader is encouraged to stop reading and try deriving the optimal choice for the `ds

(as well as the resulting upper bound on S(A, z)) themself, just to see how straightforward it is.

By Möbius inversion, we have

d

κ(d)
=
∑
e|d

∏
p|e

p− κ(p)

κ(p)
,

so if we make the definition

ϕκ(d) =
∏
p|d

(p− κ(p))

then we see that our main term is equal to

∑
d1,d2≤

√
y

`d1κ(d1)

d1

`d2κ(d2)

d2

∑
e|(d1,d2)

ϕκ(e)

κ(e)
=
∑
e|Pz
e≤√y

ϕκ(e)

κ(e)

(∑
e|d

`dκ(d)

d

)2

.

Define the variables ξe by

ξe = µ(e)
∑
e|d

`dκ(d)

d
.

By Möbius inversion, we can express the `ds in terms of the ξes by

`d = µ(d)
d

κ(d)

∑
d|e

ξe.

Since λ1 = `1 must be 1, the ξe are constrained by

∑
e

ξe = 1,
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and since the `d are supported on d ≤ √y, the ξe are also supported on e ≤ √y. Applying Cauchy-

Schwartz to our formula for the main term of the Selberg upper bound sieve, we get

∑
d|Pz

λdκ(d)

d
=
∑
e|Pz
e≤√y

ϕκ(e)

κ(e)
ξ2
e ≥

1∑
e|Pz
e≤√y

κ(e)
ϕκ(e)

,

with equality when the ξe are proportional to κ(e)
ϕκ(e) and

∑
e ξe = 1.

Now that we’ve found the main term, we just need to check that the error term is small - that

is, that the λds are not too large. Solving for the `ds, we get

`d = µ(d)
d

κ(d)

( ∑
d|e|Pz
e≤√y

κ(e)

ϕκ(e)

)( ∑
e|Pz
e≤√y

κ(e)

ϕκ(e)

)−1

= µ(d)
( ∑

e|Pz
[d,e]≤√y

κ(e)

ϕκ(e)

)( ∑
e|Pz
e≤√y

κ(e)

ϕκ(e)

)−1

,

so

0 ≤ µ(d)`d ≤ 1.

In particular, we have

|λd| ≤
∑

[d1,d2]=d
d1,d2≤

√
y

1 ≤ 3ω(d).

Summarizing, we have the following general result.

Theorem 28 (Selberg upper bound sieve). If A satisfies

|Ad| =
κ(d)

d
|A|+Rd

with κ multiplicative and κ(p) < p for all p, then for any y we have

S(A, z) ≤ |A|∑
d|Pz
d≤√y

κ(d)
ϕκ(d)

+
∑

d1,d2|Pz
d1,d2≤

√
y

|R[d1,d2]|,

where ϕκ(d) =
∏
p|d(p− κ(p)).

In order to apply this, we need to estimate the sum

∑
d|Pz
d≤√y

κ(d)

ϕκ(d)
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which appears in the denominator of the main term. As a quick sanity check, note that if we take

y to ∞, we get ∑
d|Pz

κ(d)

ϕκ(d)
=
∏
p<z

(
1 +

κp
p− κp

)
=
∏
p<z

(
1− κp

p

)−1

,

which is the inverse of the expected main term. In [28], Selberg gives a quick way to bound the main

term for general y and κ using Rankin’s trick.

Proposition 28. If
∑
p<z κp

log(p)
p = κ log(z) and s = log(y)

log(z) , then

∏
p<z

(
1− κp

p

) ∑
d|Pz
d≤√y

κ(d)

ϕκ(d)
≥ 1− exp

(
− s

2 log( s
2eκ )− κ

)
.

In particular, we have

Fκ(s) ≤ 1

1− exp
(
− s

2 log( s
2eκ )− κ

) .
Proof. For any δ > 0, we have

∏
p<z

(
1− κp

p

) ∑
d|Pz
d≤√y

κ(d)

ϕκ(d)
= 1−

∏
p<z

(
1− κp

p

) ∑
d|Pz
d>
√
y

κ(d)

ϕκ(d)

≥ 1−
∏
p<z

(
1− κp

p

)
· y−δ/2 ·

∑
d|Pz

κ(d)dδ

ϕκ(d)

= 1− y−δ/2
∏
p<z

(
1− κp

p

)(
1 +

κpp
δ

p− κp

)
= 1− y−δ/2

∏
p<z

(
1 +

κp(p
δ − 1)

p

)
.

Now we use the bound 1 + x ≤ ex to see that this is

≥ 1− y−δ/2 exp
(∑
p<z

κp(p
δ − 1)

p

)
≥ 1− y−δ/2 exp

(zδ − 1

log(z)

∑
p<z

κp log(p)

p

)
= 1− y−δ/2 exp(κ(zδ − 1)),

where the second inequality follows from the fact that pδ−1
log(p) is an increasing function of p. Taking
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δ =
log(

s
2κ )

log(z) , we get

∏
p<z

(
1− κp

p

) ∑
d|Pz
d≤√y

κ(d)

ϕκ(d)
≥ 1− exp

(
− s

2 log( s
2κ ) + κ( s

2κ − 1)
)
.

Corollary 6 (Fundamental Lemma of Sieve Theory). For any fixed κ, we have Fκ(s) ≤ 1 +

exp(− s2 log(s) +O(s)) and fκ(s) ≥ 1− exp(− s2 log(s) +O(s)).

Proof. The bound on Fκ follows the previous proposition. For the bound on fκ, we can apply

Buchstab iteration once to see that

fκ(s) ≥ 1− 1

sκ

∫
t>s

Fκ(t− 1)− 1 dtκ

≥ 1−
∫
t>s

exp(− t
2 log(t) +O(t))dt

≥ 1− exp(− s2 log(s) +O(s)).

Now we’ll try to find the asymptotic for the main term of Selberg’s sieve. If we have z ≥ √y,

then we wish to estimate the sum ∑′

d≤√y

κ(d)

ϕκ(d)
,

where the ′ indicates that the sum is over squarefree numbers only. Setting

g(s) =
∏
p

(
1 +

κp
(p− κp)ps

)
,

Perron’s formula gives us ∑′

d≤√y

κ(d)

ϕκ(d)
=

1

2πi

∫ c+i∞

c−i∞
g(s)

√
ys

s
ds,

for any c > 0. Writing G(s) for the ratio between g(s) and ζ(s + 1)κ (which is analytic in a

neighborhood of s ≥ 0), and using the fact that ζ(s+ 1) has a simple pole with residue 1 at s = 0,

this comes out to

1

2πi

∫ c+i∞

c−i∞
G(s)ζ(s+ 1)κ

√
ys

s
ds = (G(0) + o(1))

log(
√
y)κ

Γ(κ+ 1)
,
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and we have

G(0) =
∏
p

(
1 +

κp
p− κp

)(
1− 1

p

)κ
= (1 + o(1))

∏
p<z

(
1 +

κp
p− κp

)(
1− 1

p

)κ
=

1 + o(1)

eγκ log(z)κ

∏
p<z

(
1− κp

p

)−1

.

Thus, we have ∏
p<z

(
1− κp

p

)∑′

d≤√y

κ(d)

ϕκ(d)
=

log(
√
y)κ

eγκΓ(κ+ 1) log(z)κ
+ o(1).

Now we want to restrict the sum to z-smooth d. Since the summand corresponding to d is

weighted by ≈ τκ(d), we expect that the weighted proportion of summands of size about w which

happen to be z-smooth is about ρκ( log(w)
log(z) ) (since the prime factors of a randomly chosen d, with

probability weighted by τκ(d), are governed by the general stick-breaking process with parameter

κ). Thus, if y = zs we predict the following asymptotic:

∏
p<z

(
1− κp

p

) ∑
d|Pz
d≤√y

κ(d)

ϕκ(d)
=

∫ s
2

0
ρκ(t)dtκ

eγκΓ(κ+ 1)
+ o(1).

Defining

σκ(s) =

∫ s
2

0
ρκ(t)dtκ

eγκΓ(κ+ 1)
,

we have

s−κσκ(s) =
1

(2eγ)κΓ(κ+ 1)
0 < s ≤ 2,

(s−κσκ(s))′ = −κs−κ−1σκ(s− 2) s ≥ 2.

Proposition 29. If σκ is defined as above, the Selberg upper bound sieve gives us the bound

Fκ(s) ≤ 1

σκ(s)
.

5.1 Asymptotic formulas for the Selberg sieve weights

Recall that we have

λd =
∑

[d1,d2]=d

`d1
`d2
,
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and

`d = µ(d)
d

κ(d)

( ∑
d|e|Pz
e≤√y

κ(e)

ϕκ(e)

)( ∑
e|Pz
e≤√y

κ(e)

ϕκ(e)

)−1

.

We can rewrite the formula for `d as

`d = µ(d)
d

ϕκ(d)

( ∑
e|Pz

e≤√y/d
gcd(d,e)=1

κ(e)

ϕκ(e)

)( ∑
e|Pz
e≤√y

κ(e)

ϕκ(e)

)−1

.

We can modify the argument of the previous section by leaving the primes dividing d out of the

product defining g(s) to see that if z >
√
y/d, we have

∏
p<z

(
1− κp

p

) ∑
e|Pz

e≤√y/d
gcd(d,e)=1

κ(e)

ϕκ(e)
≈
∏
p|d

(
1− κp

p

)
·

log(
√
y/d)κ

eγκΓ(κ+ 1) log(z)κ

=
ϕκ(d)

d
·

log(
√
y/d)κ

eγκΓ(κ+ 1) log(z)κ
.

Approximating the effect of restricting to z-smooth summands by using the general stick-breaking

process with parameter κ, we get the following approximation.

Proposition 30. If s = log(y)
log(z) , u = log(d)

log(z) and ` is defined to optimize the Selberg upper bound sieve

of dimension κ, then

`d ≈ µ(d)

∫ s
2−u

0
ρκ(t)dtκ∫ s

2

0
ρκ(t)dtκ

.

When s goes to ∞ this becomes

`d ≈

µ(d) if d <
√
y,

0 else,

and when s ≤ 2 it becomes

`d ≈ µ(d)
(

1− log(d)

log(
√
y)

)κ
+
.

The only case in which the Selberg upper bound sieve is known to be optimal is when κ = 1 and

s ≤ 2. In this case the Selberg sieve is given by

λd ≈ µ(d)
∑

[d1,d2]=d

µ((d1, d2))
(

1− log(d1)

log(
√
y)

)
+

(
1− log(d2)

log(
√
y)

)
+
,
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θd ≈
(∑

k|d

µ(k)
(

1− log(k)

log(
√
y)

)
+

)2

.

For d ≤ √y, we have

λd ≈ µ(d)
(
1−

∑
p|d

log(p)2

log(
√
y)2

)
.

5.1.1 Unexpected pathology of the Selberg sieve weights

It’s reasonable to conjecture that in any good sieve, λd should have the same sign as µ(d), and

should furthermore be bounded by 1 in absolute value. Here I’ll give an example where this is not

the case. This example will even have κ = 1 and s = 2, where the Selberg upper bound sieve is

known to be optimal.

Proposition 31. Suppose that κ = 1 and y = z2. Suppose d is a product of 9 primes, all of which

are close to y
1
12 =

√
y

1
6 . Then the Selberg sieve weight λd is approximately 7

2 > 1, while µ(d) = −1.

Proof. This is a straightforward calculation:

λd ≈ −
((

9

4, 5

)
+

(
9

5, 4

))(
1− 4

6

)(
1− 5

6

)
+

(
9

4, 4, 1

)(
1− 5

6

)2

=
7

2
.



Chapter 6

Computability of the sifting

functions fκ, Fκ - review of

Selberg’s work

Let A be a (possibly weighted) set of whole numbers, and for each positive integer d set Ad = {a ∈
A, d | a}. Let κ be a real number and by abuse of notation let κ : N→ R be a multiplicative function

satisfying 0 ≤ κ(p) < p for all p, and

∑
p≤x

κ(p)
log(p)

p
= (κ+ o(1)) log(x).

Suppose that z, y are such that for every squarefree integer d, all of whose prime factors are less

than z, we have ∣∣∣|Ad| − κ(d)
y

d

∣∣∣ ≤ κ(d), (6.1)

or alternatively such that for some fixed ε > 0 and every such d we have∣∣∣|Ad| − κ(d)
y

d

∣∣∣ ≤ κ(d)
y

d log(y/d)2κ+ε
. (6.2)

In particular, we have |A| = y + O(1) in the first case, or |A| = y + O(y/ log(y)2κ+ε) in the second

case. We want to estimate the quantity

S(A, z) = |{a ∈ A,∀p < z (a, p) = 1}| .

80
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Suppose now that y = zs, s a constant, y, z going to infinity. Define sifting functions fκ(s), Fκ(s) by

(1 + o(1))fκ(s)y
∏
p<z

(
1− κ(p)

p

)
≤ S(A, z) ≤ (1 + o(1))Fκ(s)y

∏
p<z

(
1− κ(p)

p

)
,

with fκ(s) as large as possible (resp. Fκ(s) as small as possible) given that the above inequality

holds for all choices of A satisfying (6.1). Selberg [28] has shown (in a much more general context)

that the functions fκ(s), Fκ(s) are continuous, monotone, and computable for s > 1, that they do

not change if we replace (6.1) with (6.2), and that they tend to 1 exponentially as s goes to infinity.

We’ll go over the arguments used to prove these claims in this chapter.

More specifically, we’ll see that fκ(s) and Fκ(s) can be defined as follows. LetM be the collection

of all finite multisubsets of [0, 1], and for S ∈ M let Σ(S) be the sum of the elements of S and |S|
be the number of elements of S (both counted with multiplicity). When we write sums like

∑
A⊆S ,

we also count subsets A with multiplicity, so such a sum will always have 2|S| summands. Let

λ :M→ R be a piecewise continuous function supported on S with Σ(S) ≤ 1, and define a function

θ :M→ R by

θ(S) =
∑
A⊆S

λ(A).

We say that (λ, θ) forms an upper (resp. lower) bound sieve with sifting limit s if λ is supported

on multisubsets of [0, 1
s ], θ(∅) = λ(∅) ≥ 1 (resp. θ(∅) ≤ 1), and θ(S) ≥ 0 (resp. θ(S) ≤ 0) for all

S ⊆ [0, 1
s ] with |S| ≥ 1. Then

Fκ(s) = inf
(λ,θ)≥0

∞∑
n=0

κn

n!

∫ 1
s

0

· · ·
∫ 1

s

0

θ(x1, ..., xn)
dx1

x1
· · · dxn

xn
, (6.3)

where the infimum is over all upper bound sieves (λ, θ) with sifting limit s, and there is a similar

formula for fκ(s) (note that when fκ(s) = 0, we will typically have λ(∅) = 0).

6.1 Setup

We assume that s = log(y)
log(z) and κ are fixed, and that there is a sequence z1, z2, ... going off to infinity

as well as a sequence of asymptotically good sieves (λj , θj) with

θj(d) =
∑
k|d

λjk

such that θj(d) ≥ 0 if these are upper bound sieves, or θj(d) ≤ 0 for d | Pzj , d > 1 if these are

lower bound sieves. If these sieves are any good, then in particular their error terms must be under
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control, so we must have ∑
d|Pzj

|λjd|κ(d)� zsj .

Finally, we assume that the main terms of these sieves approach the optimal main terms. The

following formula is crucial.

Proposition 32. If (λ, θ) satisfy θ(d) =
∑
k|d λk and κ is a multiplicative function, then we have

∑
d|Pz

λdκ(d)

d
=
∏
p<z

(
1− κ(p)

p

)∑
d|Pz

θ(d)κ(d)

ϕκ(d)
,

where ϕκ is the multiplicative function given by ϕκ(p) = p− κ(p).

Thus, we assume that

lim
j→∞

∑
d|Pzj

θj(d)κ(d)

ϕκ(d)
=

Fκ(s) if (λj , θj) are upper bound sieves,

fκ(s) if (λj , θj) are lower bound sieves.

6.2 Ignoring the small primes

In this section, we’ll show that we can basically ignore the small primes without affecting the main

terms of our upper and lower bounds too much. The argument here is based on Section 6 of [28].

Theorem 29. Let P1,P2 be two disjoint sets of primes, let Pi =
∏
p∈Pi p, and suppose we have

upper and lower bound sieves (λi,±, θi,±), with λi,±d supported on d | Pi, λi,±1 = 1, and

±θi,±(d) = ±
∑
k|d

λi,±k ≥ 0

for d | Pi, d > 1. Then we can define upper and lower bound sieves (λ±, θ±) for the set of primes

P = P1 ∪ P2 by

λ+
d = λ1,+

d1
λ2,+
d2
, θ+(d) = θ1,+(d1)θ2,+(d2)

and

λ−d = λ1,+
d1
λ2,−
d2

+λ1,−
d1

λ2,+
d2
−λ1,+

d1
λ2,+
d2
, θ−(d) = θ1,−(d1)θ2,−(d2)−(θ1,+(d1)−θ1,−(d1))(θ2,+(d2)−θ2,−(d2)),

for d | P =
∏
p∈P p, where di = gcd(d, Pi). If

∑
d|Pi

λi,+d κ(d)

d
= Fi

∏
p∈Pi

(
1− κp

p

)
,
∑
d|Pi

λi,−d κ(d)

d
= fi

∏
p∈Pi

(
1− κp

p

)
,
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then we have ∑
d|P

λ+
d κ(d)

d
= F

∏
p∈P

(
1− κp

p

)
,
∑
d|P

λ−d κ(d)

d
= f

∏
p∈P

(
1− κp

p

)
,

where

F = F1F2, f = f1f2 − (F1 − f1)(F2 − f2).

In particular, if F1, f1 = 1 +O(ε) and f2, F2 = O(1), then

F = F2 +O(ε), f = f2 +O(ε).

Corollary 7. Let η > 2ε > 0. If Pzε,z =
∏
zε≤p<z p and we have upper and lower bound sieves

(λε,±, θε,±) such that the λε,±d are bounded by a constant C and supported on d | Pzε,z with d < zs−η

and ±θε,±(d) ≥ 0 for d | Pzε,z, d > 1, then we can construct upper and lower bound sieves (λ±, θ±)

with the λ±d bounded by 3C · 3ω(d) and supported on d < zs−η/2, ±θ±(d) ≥ 0 for d | Pz, d > 1, and

such that if

∑
d|Pzε,z

λε,+d κ(d)

d
= Fε

∏
zε≤p<z

(
1− κp

p

)
,

∑
d|Pzε,z

λε,−d κ(d)

d
= fε

∏
zε≤p<z

(
1− κp

p

)
,

with fε, Fε = O(1), then we have

∑
d|Pz

λ+
d κ(d)

d
= F

∏
p<z

(
1− κp

p

)
,
∑
d|Pz

λ−d κ(d)

d
= f

∏
p<z

(
1− κp

p

)
,

with

F = Fε +O(e−
η
ε ), f = fε +O(e−

η
ε ).

Proof. Apply the previous theorem, using the Fundamental Lemma (see Corollary 6) upper and

lower bound sieves supported on d | Pzε , d < zη/2 to handle the primes below zε.

Note that conversely, starting from any upper bound sieve (λ+, θ+), we can restrict the support

of λ+
d to d | Pzε,z to get an upper bound sieve for the set of primes between zε and z, and that the

main term of the resulting sieve will only improve, since the new main term is equal to

∑
d|Pzε,z

θ+(d)κ(d)

ϕκ(d)
≤
∑
d|Pz

θ+(d)κ(d)

ϕκ(d)
.

Similar reasoning holds for lower bound sieves.

We can also prove that the sifting functions Fκ(s), fκ(s) are continuous in s, by taking a given

sieve, increasing z a little bit, and using a trivial sieve (such as the union bound) to handle the new

large primes.
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Proposition 33. The functions Fκ(s), fκ(s) are monotone and continuous in s.

6.3 Bounding the sieve weights

This argument is from Section 5 of [28].

First, note that we have

∑
d

λdκ(d)

d
=
∏
p<z

(
1− κ(p)

p

)∑
d

θ(d)κ(d)

ϕκ(d)
,

so ∑
d

θ(d)κ(d)

ϕκ(d)

is asymptotically equal to either Fκ(s) (if (λ, θ) is an optimal upper bound sieve) or to fκ(s) (if

(λ, θ) is an optimal lower bound sieve). In particular, this quantity remains bounded.

Our goal is to show that |λd| is in some sense bounded on average. We do this as follows: first,

we let Pzε,z be the product of primes between zε and z. Then from

λd =
∑
k|d

µ(d/k)θ(k)

we have

∑
d|Pzε,z

κ(d)

d
|λd| ≤

∑
d|Pzε,z

κ(d)

d

∑
k|d

|θ(k)|

≤
∑

d|Pzε,z

κ(d)

d

∑
k

|θ(k)|κ(k)

k

≤
∏

zε≤p<z

(
1 +

κp
p

)∑
k

|θ(k)|κ(k)

ϕκ(k)
.

Asymptotically, the first factor approaches ε−κ, and the second factor approaches either Fκ(s) or

2− fκ(s). Summarizing, we have the following bound.

Proposition 34. If (λ, θ) is an upper or lower bound sieve whose main term is C ·
∏
p<z(1−

κp
p ),

then for any ε > 0 we have

∑
d|Pzε,z

κ(d)

d
|λd| ≤ max(C, 2− C)ε−κ+o(1).
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6.4 Averaging argument

The argument in this section is based on Section 8 of [28].

Suppose we have a sequence of zj and a sequence of upper or lower bound sieves (λj , θj) with

λjd supported on d | Pzj , with remainder terms bounded by

∑
d|Pz

κ(d)|λjd| � zsj ,

and main terms satisfying

lim
j→∞

∑
d|Pz

θj(d)κ(d)

ϕκ(d)
∈ {Fκ(s), fκ(s)}.

We want to somehow average out these sieves to get an asymptotic sieve which gives a similar main

term. To do this, we first fix some small ε > 0 and ignore all the primes below zεj . Next, we will

divide the collection of primes between zεj and zj into N ranges (N large but fixed), and treat all of

the primes in a given range the same way. To define these ranges, we choose a geometric progression

t0, ..., tN with t0 = ε, tN = 1, and for a fixed j we set

Pi = {zti−1

j ≤ p < ztij }.

Note that asymptotically, we have

∑
p∈Pi

κp
p

= (κ+ o(1))(log log(ztij )− log log(z
ti−1

j )) = (κ+ o(1)) log( ti
ti−1

) = κ
log(1/ε)

N
+ o(1). (Pi)

We now define functions `jN,ε(i1, ..., ik) by

`jN,ε(i1, ..., ik) =

∑
p1∈Pi1 ,...,pk∈Pik
p1,...,pk distinct

λjp1···pk
κ(p1···pk)

p1···pk∑
p1∈Pi1 ,...,pk∈Pik

κ(p1···pk)
p1···pk

=
( N

κ log(1/ε)
+ o(1)

)k ∑
p1∈Pi1 ,...,pk∈Pik
p1,...,pk distinct

λjp1···pkκ(p1 · · · pk)

p1 · · · pk

for 1 ≤ i1, ..., ik ≤ N . By the previous section, we have

|`jN,ε(i1, ..., ik)| ≤
( N

κ log(1/ε)
+ o(1)

)k
max(Fκ(s), 2− fκ(s))ε−κ+o(1),

so the averages `jN,ε(i1, ..., ik) are bounded in absolute independently of j. Thus by compactness we
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can choose a subsequence j1, ... of the js such that the limits

`N,ε(i1, ..., ik) = lim
m→∞

`jmN,ε(i1, ..., ik)

exist for all 1 ≤ i1, ..., ik ≤ N . The `N,εs will become our blueprint for a sieve which has a nearly

optimal main term.

Next we prove the support of the functions `N,ε is small. Suppose that i1, ..., ik have ti1−1 + · · ·+
tik−1 > s. Then for each j, by our assumed bound on the remainder terms we have

|`jN,ε(i1, ..., ik)| ≤
( N

κ log(1/ε)
+ o(1)

)k 1

z
ti1−1

j · · · ztik−1

j

∑
p1∈Pi1 ,...,pk∈Pik
p1,...,pk distinct

|λjp1···pk |κ(p1 · · · pk)

�
( N

κ log(1/ε)
+ o(1)

)k zsj

z
ti1−1

j · · · ztik−1

j

,

and in the limit this goes to 0. In fact, the same argument shows that we have the slightly stronger

bound

lim
j→∞

∑
i1,...ik≤N

ti1−1+···+tik−1>s

|`jN,ε(i1, ..., ik)| = 0.

Finally, we can define a sieve (λN,ε, θN,ε) on the primes between zε and zε
2/N

by the simple step

function

λN,εp1···pk = `N,ε(i1 + 2, ..., ik + 2),

for p1 ∈ Pi1 , ..., pk ∈ Pik , i1, ..., ik ≤ N − 2. Then λN,εp1···pk is supported on p1 · · · pk such that

if pj ∈ Pij , we have
∑
j tij+1 ≤ s. Since tij = ε1/N tij+1, this gives

∑
j tij ≤ ε1/Ns, so λN,εd is

supported on d ≤ zε
1/Ns. Since the λN,εd s only take finitely many different values, this gives us the

remainder bound ∑
d|Pz

κ(d)|λN,εd | � zε
1/Ns log(z)κ.

If the (λj , θj) are all upper (resp. lower) bound sieves, then (λN,ε, θN,ε) is also an upper (resp.

lower) bound sieve, since we have

θN,ε(p1 · · · pk) =
( N

κ log(1/ε)

)k
lim
m→∞

∑
q1∈Pi1+2,...,qk∈Pik+2

q1,...,qk distinct

θjm(q1 · · · qk)κ(q1 · · · qk)

ϕκ(q1 · · · qk)
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for p1 ∈ Pi1 , ..., pk ∈ Pik . The main term is

lim
z→∞

∑
k≥0

i1,...,ik≤N−2

∑
p1∈Pi1 ,...,pk∈Pik
p1,...,pk distinct

θN,ε(p1 · · · pk)κ(p1 · · · pk)

ϕκ(p1 · · · pk)

= lim
m→∞

∑
k≥0

i1,...,ik≤N−2

∑
q1∈Pi1+2,...,qk∈Pik+2

q1,...,qk distinct

θjm(q1 · · · qk)κ(q1 · · · qk)

ϕκ(q1 · · · qk)

= lim
m→∞

∑
d|P

zε
(N−2)/N

,z

θjm(d)κ(d)

ϕκ(d)
,

which is closer to 1 than Fκ(s) if it is an upper bound sieve or closer to 1 than fκ(s) if it is a lower

bound sieve.

Finally, we have to incorporate the primes below zε and the primes between zε
2/N

and z into

our sieve. The effect of incorporating the primes between zε
2/N

and z is small as long as ε2/N is

sufficiently close to 1, by the continuity of Fκ(s), fκ(s). Since λN,εd is supported on d ≤ zε1/Ns, if we

take η = (1− ε1/N )s, we see that the effect of incorporating the small primes is small as long as η/ε

is sufficiently large, by Corollary 7. If we choose ε = 1
N then we will have

1− ε1/N =
log(N)

N
+O

( log(N)2

N2

)
,

so the effect of incorporating the missing primes will go to 0 as N →∞.

Summing everything up, we have shown that there are near-optimal sieves having the following

very simple form.

Theorem 30. For any κ, s with s > 1 and any δ > 0, there is an η > 0 and there are upper and

lower bound sieves (λ±, θ±) such that λ±d is supported on d | Pz, d < zs−η, with |λ±d | � 3ω(d) for all

d, and such that the main terms have

∑
d|Pz

θ+(d)κ(d)

d
≤ Fκ(s) + δ

and ∑
d|Pz

θ−(d)κ(d)

d
≥ fκ(s)− δ.

Moreover, these sieves can be built by combining a fundamental lemma sieve to handle the small

primes with a sieve having “piecewise constant” sieve weights λd to handle the remaining primes.

As a consequence, we can show that replacing the assumption (6.1) with (6.2) does not change

the main term of the sieve.
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Corollary 8. Suppose that A satisfies∣∣∣|Ad| − κ(d)
y

d

∣∣∣� κ(d)
y

d log(y/d)2κ+ε

for some ε > 0, and that sieve weights λd are chosen as in the Theorem 30 (with κ, s, δ fixed). Then

the remainder term in the resulting sieve is asymptotically smaller than the main term, that is, we

have ∑
d

|λd|κ(d)
y

d log(y/d)2κ+ε
� y

log(y)κ+ε+o(1)
.

Proof. Since the λd are supported on d with d < zs−η (with η > 0 depending only on δ), we have

log(y/d) ≥ η log(z).

Plugging this in, we get

∑
d

|λd|κ(d)
y

d log(y/d)2κ+ε
� y

(η log(z))2κ+ε

∑
d

|λd|κ(d)

d
.

By the argument of Proposition 34, we have

∑
d

|λd|κ(d)

d
≤
∏
p<z

(
1 +

κp
p

)
max(Fκ(s) + δ, 2− fκ(s) + δ)� log(z)κ+o(1).

Putting these bounds together completes the proof.

6.5 Selberg’s proposed algorithm

Based on the argument in the previous section, we can extract an algorithm (Algorithm 2) for

approximating Fκ(s), taking a parameter N and producing an upper bound on Fκ(s) as output. If

we trace through the argument used in the previous section more carefully, we can extract explicit

bounds on how big we need to take N in order to guarantee that our upper bound is within δ of the

true value of Fκ(s). The algorithm for computing fκ(s) is similar.

6.6 Combinatorial reformulation of sifting functions

At this point we can give formulas for the sifting functions Fκ, fκ which have nothing to do with

number theory, and are purely combinatorial in nature. We will replace the set of primes below

z = y
1
s with the interval [0, 1

s ], with the prime p corresponding to the real number log(p)
log(y) , and we

will replace the collection of d | Pz with the collection of subsets of [0, 1
s ], with d corresponding to

{ log(p)
log(y)

∣∣ p | d}.
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Algorithm 2 Approximate Fκ(s)

1: procedure Approximate-F (κ,s,N)
2: Set ε← 1

N .

3: Set ti ← ε1−
i
N for 0 ≤ i ≤ N .

4: Define N ⊂ NN by N ← {(n1, ..., nN ) |
∑N
i=1 niti ≤ ε

1
N s}.

5: Define c : N → R by cκ(n1, ..., nN )←
∏N
i=1

1
ni!

(
κ log(1/ε)

N

)ni
. . see (Pi)

6: Let CN be the (convex) set of λ : N → R such that λ(0) = 1 and such that for all (n1, ..., nN ) ∈
NN we have

∑
e∈N λ(e)

∏N
i=1

(
ni
ei

)
≥ 0.

7: Find λ ∈ CN such that
∑
e∈N cκ(e)λ(e) is within ε of its minimum value. . see Section 2.3

8: Set η ← (1− ε1/N )s.
9: Set F1 ← 1

1−exp
(
− η

2ε log(
η

2eεκ )−κ
) . . We have Fκ(η/ε) ≤ F1 by Proposition 28

10: Set F2 ← ε−κ
∑
e∈N cκ(e)λ(e).

11: return F1F2. . F1F2 is an upper bound on Fκ(s) by Theorem 29

Definition 14. Let M be the collection of all finite multisubsets of [0, 1], and for S ∈ M let

Σ(S) be the sum of the elements of S and |S| be the number of elements of S (both counted with

multiplicity). When we write sums like
∑
A⊆S , we also count subsets A with multiplicity, so such a

sum will always have 2|S| summands.

Definition 15. Let λ :M→ R be a piecewise continuous function supported on S with Σ(S) ≤ 1,

and define a function θ :M→ R by

θ(S) =
∑
A⊆S

λ(A).

We say that (λ, θ) forms an upper (resp. lower) bound sieve with sifting limit s if λ is supported

on multisubsets of [0, 1
s ], θ(∅) = λ(∅) ≥ 1 (resp. θ(∅) ≤ 1), and θ(S) ≥ 0 (resp. θ(S) ≤ 0) for all

S ⊆ [0, 1
s ] with |S| ≥ 1.

Theorem 31. We have

Fκ(s) = inf
(λ,θ)≥0

∞∑
n=0

κn

n!

∫ 1
s

0

· · ·
∫ 1

s

0

θ(x1, ..., xn)
dx1

x1
· · · dxn

xn
,

fκ(s) = sup
(λ,θ)≤0

∞∑
n=0

κn

n!

∫ 1
s

0

· · ·
∫ 1

s

0

θ(x1, ..., xn)
dx1

x1
· · · dxn

xn
,

where the infimum is over all upper bound sieves (λ, θ) with sifting limit s, and the supremum is

over all lower bound sieves (λ, θ) with sifting limit s.



Chapter 7

Optimized Combinatorial sieve

7.1 Basic principle

Proposition 35. Suppose that λd satisfy λ1 = 1, and for any d | Pz and any prime p < z which is

smaller than all the prime factors of d we have

λd + λpd ≤ 0. (C)

Then

S(A, z) ≥
∑
d|Pz

λd|Ad|.

Similarly, if for all such d, p we have λd + λpd ≥ 0, then S(A, z) ≤
∑
d|Pz λd|Ad|.

Proof. We just need to show that for any n | Pz with n 6= 1, we have

∑
d|n

λd ≤ 0.

Let p be the least prime dividing n. Then by (C), we have

∑
d|n

λd =
∑
d|n/p

λd + λpd ≤ 0.

The upper-bound case is similar.

Definition 16. Any collection of sieve weights λd satisfying the assumptions of Proposition 35 is

called a combinatorial sieve.

By linear programming duality and the fact that each constraint involves just one or two variables,

the optimal choice of weights λd satisfying condition (C) has the property that each λd is either

90
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equal to 0, or equal to −λd/p, where p is the least prime dividing d. By induction of the number of

prime factors, we see that for each d | Pz we have

λd ∈ {µ(d), 0}

in an optimal combinatorial sieve. If it is an optimal lower bound combinatorial sieve and d has an

even number of prime factors, then for each prime p less than the smallest prime factor of d we must

have λpd = −λd in order to satisfy (C).

What are the possible “pivots” of this linear program? For each d with an even number of prime

factors, we can toggle whether the value of λd is determined by λd = 0 or λd = −λd/p. If λd/p = 0,

this has no effect, leading to a large amount of degeneracy in the corresponding linear program. If

we toggle the value of λd from 0 to 1, then the mapping k 7→ λkd for k having all prime factors less

than the least prime factor of d defines a combinatorial lower bound sieve with z replaced by the

least prime factor of d.

Proposition 36. If we choose sieve weights λd for d | Pz defining a combinatorial lower bound sieve

with
∑
d
λd
d > 0 in order to minimize the quantity

w(z) = min
(λd)d|Pz comb. lower bound sieve

∑
d|Pz |λd|∑
d|Pz

λd
d

,

then for each d with an even number of prime factors, with p the least prime dividing d, we have

λd = −λd/p ⇐⇒ dw(p) < w(z).

More explicitly, if d = p1 · · · pm with z > p1 > · · · > pm, then

λd =

µ(d) ∀k s.t. 2k ≤ m, p1 · · · p2kw(p2k) < w(z),

0 otherwise.

Proof. We just have to figure out which pivots are advantageous. Suppose that d0 has an even

number of prime factors, with p the least prime dividing d0, and that currently we have λd0
= 0 and

λd0/p = −1. We would like to know whether toggling the value of λd0 to 1 can help. Let (λ′k)k|Pp

be a combinatorial lower bound sieve, so that the new value after toggling λd0 becomes∑
d|Pz |λd|+

∑
k|Pp |λ

′
k|∑

d|Pz
λd
d +

∑
k|Pp

λ′k
d0k

.

Since a+b
c+d <

a
c if and only if b

d <
a
c (for positive a, b, c, d), this represents an improvement if and
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only if

d0

∑
k|Pp |λ

′
k|∑

k|Pp
λ′k
k

<

∑
d|Pz |λd|∑
d|Pz

λd
d

.

Since the least possible value of the left hand side is d0w(p), we see that λd0 should be toggled to 1

iff d0w(p) < w(z).

We can generalize this slightly to the case of giving good bounds in intervals which are signifi-

cantly larger that w(z). Define sets D±z,y by

D−z,y = {p1 · · · pm | z > p1 > · · · > pm,∀k s.t. 2k ≤ m, p1 · · · p2kw(p2k) < y}, (D−)

D+
z,y = {p1 · · · pm | z > p1 > · · · > pm,∀k s.t. 2k + 1 ≤ m, p1 · · · p2k+1w(p2k+1) < y}. (D+)

Proposition 37. If A is an interval with |A| = y, then the best combinatorial lower bound sieve

gives the bound

S(A, z) ≥
∑

d∈D−z,y

µ(d)|Ad| ≥
( ∑
d∈D−z,y

λd
d

)
y − |D−z,y|,

and the best combinatorial upper bound sieve gives the bound

S(A, z) ≤
∑

d∈D+
z,y

µ(d)|Ad| ≤
( ∑
d∈D+

z,y

λd
d

)
y + |D+

z,y|,

where D±z,y are given by (D−) and (D+), with w(p) defined as in Proposition 36.

Making the asymptotic approximation

w(z) � zβ ,

we recover the β-sieve, which is given in the lower bound case by

λd =

µ(d) ∀k s.t. 2k ≤ m, p1 · · · p2kp
β
2k < zs,

0 otherwise,

and given in the upper bound case by a similar formula where the role of odd and even are inter-

changed.

While it is easy to prove that j(Pz) ≤ w(z), in fact we can do slightly better by treating the

prime 2 specially.

Proposition 38. If z > 2, then j(Pz) ≤ w(z)
2 .

Proof. We just need to show that j(Pz/2) ≤ w(z)/4. This will follow if we can show that for odd d,

we have d ∈ D−z,w(z) if and only if 2d ∈ D−z,w(z) (since the effect of including the prime 2 on the value
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of w(z) is then multiplication by 1+1
1− 1

2

= 4). If d has an even number of prime factors this is trivial, so

assume d has an odd number of prime factors. Let d = p1 · · · p2k+1, with z > p1 > · · · > p2k+1 > 2.

If k = 0, then we need to show that p1 · 2 · w(2) = 2p1 < w(z), that is, that w(z) ≥ 2z for all

z > 3. If k > 0, then it is enough to show that p1 · · · p2k+1 · 2 · w(2) ≤ p1 · · · p2k · w(p2k), that is,

that 2p2k+1 ≤ w(p2k): again, this will follow if we can show that w(z) ≥ 2z for all z > 3.

So it remains to show that w(z) ≥ 2z for z > 3. For small values of z, this can be checked by

hand. For large values of z, we can use the fact that w(z) ≥ j(Pz)� z log(z)
log(log(z)) by Theorem 3.

7.2 The combinatorial sieve as the limit of Buchstab iteration

Buchstab iteration is based on the identity

S(A, z) = |A| −
∑
p<z

S(Ap, p).

Applying this twice (to avoid dealing with upper bound sieves), we get

S(A, z) = |A| −
∑
p<z

|Ap|+
∑
q<p<z

S(Apq, q).

In order to get a good lower bound, we will only keep summands S(Apq, q) such that we can show

S(Apq, q) > 0. In the case A is an interval, we see that we can show S(Apq, q) > 0 when

w(q) ≤ |Apq| =
|A|
pq

+O(1).

Thus, keeping the summands with pqw(q) < |A|, we get

S(A, z) ≥ |A| −
∑
p<z

|Ap|+
∑
q<p<z

pqw(q)<|A|

S(Apq, q).

Applying this recursively, we get

S(A, z) ≥
∑

d∈D−
z,|A|

µ(d)|Ad|,

which is exactly the optimal combinatorial sieve derived in the previous section.
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7.3 The β-sieve

For any β, we define sets Dβ,±z,y by

Dβ,−z,y = {p1 · · · pm | z > p1 > · · · > pm,∀k s.t. 2k ≤ m, p1 · · · p2kp
β
2k < y}, (Dβ,−)

Dβ,+z,y = {p1 · · · pm | z > p1 > · · · > pm,∀k s.t. 2k + 1 ≤ m, p1 · · · p2k+1p
β
2k+1 < y}, (Dβ,+)

and define F βκ (s), fβκ (s) by

F βκ (s) = lim
z→∞

∑
d∈Dβ,+

z,zs

µ(d)κ(d)

d
,

fβκ (s) = lim
z→∞

∑
d∈Dβ,−

z,zs

µ(d)κ(d)

d
.

For a given κ, the best choice for β has fβκ (β) = 0, unless we can take β = 1 (which, as it turns out,

occurs for κ ≤ 1
2 ). The main result concerning the β-sieve in the range κ > 1

2 is as follows.

Theorem 32 (Chapter 11 of [8], [16]). Suppose that κ > 1
2 . Let pκ(s), qκ(s) solve the equations

d
ds (spκ(s)) = κpκ(s)− κpκ(s+ 1),

d
ds (sqκ(s)) = κqκ(s) + κqκ(s+ 1),

with lims→∞ spκ(s) = 1 and qκ(s) not identically 0. Then the best choice for β in the β-sieve has

β − 1 equal to the largest positive zero of qκ(s), and has

sκF βκ (s) =
2(β − 1)κ−1

p(β − 1)
β − 1 ≤ s ≤ β + 1,

d
ds (sκF βκ (s)) = κsκ−1fβκ (s− 1) s > β + 1,

d
ds (sκfβκ (s)) = κsκ−1F βκ (s− 1) s > β.

When 2κ is an integer, qκ(s) is a polynomial of degree 2κ− 1, and β is an algebraic number.

We mostly care about the case κ = 1, in which case q1(s) = s − 1 and β = 2. When κ = 1,

the β-sieve produces the optimal sifting functions f(s) = f1(s), F (s) = F1(s) (see Section 8.2).

Furthermore, for any interval A of length y and any fixed s we have the more precise error terms

f(s)
y

eγ log(z)
− (c+ o(1))h(s)

y

log(z)2
≤ S(A, z) ≤ F (s)

y

eγ log(z)
+ (c+ o(1))H(s)

y

log(z)2
,

where c is a computable constant, and in fact we will state an even more precise result due to Iwaniec
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[14] below. The functions f, F, h,H are given by

F (s) =
2eγ

s
1 ≤ s ≤ 3

d
ds (sF (s)) = f(s− 1) s ≥ 3

f(s) =
2eγ log(s− 1)

s
2 ≤ s ≤ 4

d
ds (sf(s)) = F (s− 1) s ≥ 2

H(s) =
1

s2
1 ≤ s ≤ 3

d
ds

(
s2H(s)

)
= −sh(s− 1) s ≥ 3

h(s) =
1

s2

(
1 +

1

s− 1
− log(s− 1)

)
2 ≤ s ≤ 4

d
ds

(
s2h(s)

)
= −sH(s− 1) s ≥ 2

Theorem 33 (Iwaniec [14]). If A has ∣∣∣|Ad| − y

d

∣∣∣ ≤ 1

for all d, and if y = zs with s < log(y)

log(log(3y))
11
5

, then for s ≥ 3 we have

S(A, z) ≤ F (s)
∏
p<z

(
1− 1

p

)
· y + c

(
1 +

s2 log(s)5

log(y)2

)5s

H(s)
y

log(z)2
,

and for s ≥ 2 we have

S(A, z) ≥ f(s)
∏
p<z

(
1− 1

p

)
· y − c

(
1 +

s2 log(s)5

log(y)2

)5s

h(s)
y

log(z)2
,

where c is an absolute, computable constant.

The functions F, f,H, h can also be expressed in terms of the Dickman function ρ and the

Buchstab function ω (see the last two sections of Chapter 4 for the definitions and properties of ρ

and ω). We have

F (s) = eγ(ω(s)− ρ′(s)),

f(s) = eγ(ω(s) + ρ′(s)),

H(s) = 1
2 (−ω′(s) + ρ′′(s)),

h(s) = 1
2 (ω′(s) + ρ′′(s)).
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7.4 Numerical computations

The next table summarizes the results of numerical computations w(p) for p up to 1010. Details of

how these computations were performed can be found in the next subsection.

p w(p) |D−p,w(p)|
(∑

d∈D−
p,w(p)

µ(d)
d

)−1

log(p)2 p2

w(p)

2 1 1 1 0.48 4

3 4 2 2 1.20 2.25

5 12 4 3 2.59 2.08333

7 25.7142 6 4.28571428 3.78 1.90555

11 49.4117 8 6.17647058 5.74 2.44880

101 2,702.91 152 17.7823441 21.29 3.77407

1,009 181,134.1 4,298 42.1438118 47.84 5.62059

10,007 14,774,064.1 183,842 80.3628340 84.84 6.77809

100,003 1.337874× 109 10,370,628 129.006158 132.54 7.47498

1,000,003 1.267740× 1011 676,016,012 187.531120 190.86 7.88809

10,000,019 1.232150× 1013 47,905,251,846 257.205746 259.79 8.11592

100,000,007 1.211826× 1015 3,593,207,274,848 337.254693 339.32 8.25201

1,000,000,007 1.199471× 1017 280,366,672,910,696 427.822345 429.45 8.33700

10,000,000,019 1.191769× 1019 22,534,701,080,584,612 528.859876 530.18 8.39088

The first thing that jumps out is the excellent agreement between the fourth and fifth columns:

Conjecture 3. As p→∞, we have

( ∑
d∈D−

p,w(p)

µ(d)

d

)−1

= log(p)2 +O(1).

Although it is not a proof, I can at least give a heuristic explanation for this coincidence. By the

theory of the linear sieve, for 2 ≤ s ≤ 4 and z →∞ we have

∑
d∈D−

z,zs

µ(d)

d
≈ f(s)

∏
p<z

(1− 1
p ) ≈ f(s)

eγ log(z)
,

with

f(s) =
2eγ log(s− 1)

s

in this range. The important point is that

f ′(2) = eγ ,
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so if y � z2 and we let y1 = y · zε ≈ y + εy log(z), then

∑
d∈D−z,y1\D

−
z,y

µ(d)

d
≈ f ′(2)ε

eγ log(z)
≈ ε

log(z)
,

while by the defining property of D−z,y we have

y ≤
|D−z,y1

\ D−z,y|∑
d∈D−z,y1\D

−
z,y

µ(d)
d

≤ y1.

Setting δ ≈ εy log(z), we get

y � z2 =⇒ |D−z,y+δ \ D
−
z,y| ≈

εy

log(z)
≈ δ

log(z)2
.

Since w(p) � p2, this gives the approximation

|D−p,w(p)| ≈
w(p)

log(p)2
.

From this, we get ∑
d∈D−

p,w(p)

µ(d)

d
=
|D−p,w(p)|
w(p)

≈ 1

log(p)2
.

It’s somewhat harder to pin down the asymptotic behavior of the ratio between w(p) and p2.

Based on the numerical data, the following conjecture seems reasonable.

Conjecture 4. For p sufficiently large, we have

8 <
p2

w(p)
< 9.

In patricular, for z large we have j(Pz) ≤ z2

16 .

Define C to be the limiting value of the ratio between w(p) and p2:

C = lim
p→∞

p2

w(p)
.
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In order to verify that C is the correct limiting value, we’ll try to analyze the size of the set D−p,p2/C

and compare it with p2

C log(p)2 . To this end, we define the functions uC(x, y), vC(x, y) by

uC(x, y) =
C

ey
|D−ex,ey/C |,

vC(x, y) =
C

ey
|D+
ex,ey/C |.

Then we have

uC(x+ ∆x, y) = uC(x, y) +
∑

ex≤p<ex+∆x

1

p
vC(log(p), y − log(p)),

vC(x+ ∆x, y) = vC(x, y) +
∑

ex≤p<ex+∆x

Cpw(p)<ey

1

p
uC(log(p), y − log(p)),

and these approximate solutions to the system of differential-difference equations

∂

∂x
u(x, y) =

1

x
v(x, y − x),

∂

∂x
v(x, y) =

 1
xu(x, y − x) 3x < y,

0 3x > y.

Proposition 39. If u(x, y), v(x, y) satisfy the above differential-difference equations, then the quan-

tity ∫
y≥2x

y(y − 2x)

x
u(x, y)dy +

∫
y≥x

(y − x)2

x
v(x, y)dy

is independent of x.

Of course, if we guess the wrong value for C, then the approximation gets worse - so the sum

of the integrals given above will drift somewhat with x. We can thus work backwards to get an

estimate for the final value of C by guessing values for C, computing the sum of the integrals above

numerically for x large, and seeing whether it matches up with the limiting value.
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Given that u(x, 2x) ≈ 1
x2 , the limiting solution to the above system of differential-difference

equations is

u(x, y) =
2h( yx )

x2
,

v(x, y) =
2H( yx )

x2
,

d

ds
(s2h(s)) = −sH(s− 1),

d

ds
(s2H(s)) =

−sh(s− 1) s > 3,

0 s < 3,

H(s) =
1

s2
1 ≤ s ≤ 3,

h(s) =
1

s2
(1 + 1

s−1 − log(s− 1)) 2 ≤ s ≤ 4.

Thus, the limiting value of the sum of the integrals in the previous Proposition is∫
s≥2

s(s− 2)2h(s)ds+

∫
s≥1

(s− 1)22H(s)ds = 4(eγ − 1)− e−γ ,

where the integral was evaluated by expressing H,h in terms of the Dickman function and the

Buchstab function using the formulas at the end of Section 7.3, and using the formulas ω(∞) = e−γ

and
∫
ρ(s)ds =

∫
sρ(s)ds = eγ from the last two sections of Chapter 4.

To sum up, we have the following speculative method for predicting the value of the constant

C: pick some large x, compute w(p) for p < ex, guess a value for C, numerically approximate the

functions uC(x, y), vC(x, y), and adjust this guess for C based on how the value of∫
y≥2x

y(y − 2x)

x
uC(x, y)dy +

∫
y≥x

(y − x)2

x
vC(x, y)dy

compares to 4(eγ−1)−e−γ (note that since uC(x, y) = u1(x, y−log(C)), vC(x, y) = v1(x, y−log(C)),

the sum of integrals above is a monotone increasing function of C). Carrying out this procedure for

ex greater than the first 10 primes, the first 100 primes, and so on, we get the following series of

predictions.

π(ex) predicted value for C

10 3.47

100 6.73

1,000 7.78

10,000 8.16

100,000 8.30
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Although the last prediction roughly matches the numerical data, it should probably be taken with

a large grain of salt.

7.4.1 Algorithm for quick computation of w(p)

The main idea is to use the recursive structure of the sets D−p,w(p) to avoid enumerating each element

of D−p,w(p) individually. We need the following definitions.

Definition 17. If d = p1 · · · pm, p1 > · · · > pm, is a squarefree number having at least two prime

divisors, then we define the rate-limiting prime of d, written r(d), to be the p2k such that

p1 · · · p2kw(p2k) = max
2j≤m

{p1 · · · p2jw(p2j)}.

We call d basic if r(d) is the least prime divisor of d, and we call d q-basic if d is basic and r(d) = q.

Then by the definition of D−p,w(p), whenever d ∈ D−p,w(p) is basic, we also have dD−r(d),w(r(d)) ⊂
D−p,w(p). Moreover, we have the following result.

Proposition 40. For any prime p, if π(p) is the number of primes strictly below p, we have

|D−p,w(p)| = 1 + π(p) +
∑
q<p

|D−q,w(q)| · |{d q-basic, dw(q) < w(p)}|

and ∑
d∈D−

p,w(p)

µ(d)

d
= 1−

∑
q<p

1

q
+
∑
q<p

( ∑
d0∈D−q,w(q)

µ(d0)

d0

) ∑
d q-basic

dw(q)<w(p)

1

d
.

The second trick we use is to note that whether d is basic (or q-basic) or not does not depend on

the largest prime factor of d: the only way that the largest prime factor of d becomes relevant is the

inequality dw(r(d)) < w(p). So we will group together basic ds which differ only in their greatest

prime factor p1, and we will determine the range of possible values for p1 by a binary search over

primes.

As a small bonus, using this algorithm we can also compute the size of the contribution to D−p,w(p)

from each possible rate-limiting prime q. Define sets

D−q,z,y = {d ∈ D−z,y, r(d) = q}.

The following table summarizes the contribution from small rate-limiting primes q when p is either

the first prime after 109 or the first prime after 1010.
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Algorithm 3 Combinatorial Sieve Algorithm

1: function Basic-Recursion(previous-prime, size, is-even, p, w(p))
2: count ← 0, sum ← 0
3: if is-even then
4: for previous-prime < q < p and size·qq+q++ < w(p) do . q+ is the next prime after q
5: if size·q > w(q+) then
6: (smallcount, smallsum) ← Basic-Recursion(q, size·q, False, p, w(p))
7: count ← count + smallcount
8: sum ← sum + smallsum/q

9: high-prime ← max{q with size·q < w(p), q < p} . to find high-prime, use a binary search
10: count ← count + π(high-prime)− π(previous-prime)
11: sum ← sum +

∑
previous-prime <q≤ high-prime

1
q . partial sums

∑
r<q<p

1
q precomputed

12: else
13: for previous-prime < q < p and size·qq+ < w(p) do
14: if size> w(q) then
15: (smallcount, smallsum) ← Basic-Recursion(q, size·q, True, p, w(p))
16: count ← count + smallcount
17: sum ← sum + smallsum/q

18: return (count, sum)

19: procedure Main(p)
20: Precompute partial sums

∑
r<q<p

1
q for r < p

21: Precompute w(q), |D−q,w(q)|,
∑
d∈D−

q,w(q)

µ(d)
d for q such that q+qw(q) < p2

22: w(p)← p2, old-guess ← −1
23: while w(p) 6= old-guess do
24: old-guess ← w(p)
25: count ← 1 + π(p)
26: sum ← 1−

∑
q<p

1
q

27: for q+qw(q) < w(p) do
28: (smallcount, smallsum) ← Basic-Recursion(q, qw(q), True, p, w(p))
29: count ← count + smallcount·|D−q,w(q)|
30: sum ← sum + smallsum·

∑
d∈D−

q,w(q)

µ(d)
d

31: w(p)← count
sum

32: return (w(p), count, sum)
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q |D−q,w(q)| |D−q,109,w(109)|
|D−
q,109,w(109)

|

|D−
109,w(109)

| |D−q,1010,w(1010)|
|D−
q,1010,w(1010)

|

|D−
1010,w(1010)

|

2 1 50,847,533 0.0000% 455,052,510 0.0000%

3 2 18,349,760,829,536 6.5449% 1,442,620,675,334,628 6.4017%

5 4 38,333,203,290,684 13.6725% 2,996,015,319,999,088 13.2951%

7 6 24,191,486,460,984 8.6285% 2,266,779,123,561,216 10.0590%

11 8 13,520,893,437,048 4.8225% 1,178,595,771,091,176 5.2301%

13 12 12,443,247,328,332 4.4382% 957,429,548,615,856 4.2486%

17 16 11,150,038,237,104 3.9769% 747,723,477,554,192 3.3180%

19 22 11,764,005,379,280 4.1959% 727,334,597,533,786 3.2276%

23 26 10,341,770,277,488 3.6886% 620,459,111,164,568 2.7533%

29 32 9,033,164,601,856 3.2219% 566,427,988,603,328 2.5135%

31 36 7,966,641,918,492 2.8415% 526,373,588,863,692 2.3358%

37 44 7,003,305,009,756 2.4979% 499,299,190,340,280 2.2156%

41 48 5,870,924,209,440 2.0940% 441,952,828,945,728 1.9612%

43 52 5,100,448,581,228 1.8192% 400,530,155,031,500 1.7773%

47 60 4,581,582,628,560 1.6341% 375,413,661,818,040 1.6659%

53 68 3,975,647,612,556 1.4180% 338,494,002,091,784 1.5021%

59 72 3,281,982,008,040 1.1706% 287,891,823,076,704 1.2775%

61 84 3,213,337,574,496 1.1461% 287,406,444,998,736 1.2753%

67 88 2,690,678,425,864 0.9596% 245,710,266,702,384 1.0903%

71 96 2,432,622,482,976 0.8676% 225,751,386,157,440 1.0017%

73 100 2,162,057,965,000 0.7711% 203,334,439,375,000 0.9023%

79 108 1,899,204,550,344 0.6774% 181,542,616,343,748 0.8056%

83 122 1,806,077,438,460 0.6441% 175,163,828,943,888 0.7773%

89 130 1,594,174,393,110 0.5686% 157,243,449,924,470 0.6977%

97 144 1,447,331,807,088 0.5162% 145,506,973,198,608 0.6457%

> 100 76,212,984,767,906 27.1833% 6,539,699,901,209,750 29.0205%



Chapter 8

Linear sieve and the Jacobsthal

function

8.1 Numerical computation - can we beat the combinatorial

sieve?

It’s a natural question to ask whether the optimal choice of lower bound sieve λd is combinatorial,

given that we wish to maximize the quantity∑
d|Pz |λd|∑
d|Pz

λd
d

which gives an upper bound on the Jacobsthal function j(Pz). Setting this up as a linear program,

we search for numbers ad, y, and sieve weights λd, such that the following conditions are satisfied.

• For all d, ad ≥ 0.

• a1 = 0 and λ1 = 1.

• For all d | Pz, we have −1 ≤ y
d −

∑
d|k ak ≤ 1.

• For all d | Pz with d > 1, we have
∑
k|d λk ≤ 0.

• We have y =
∑
d|Pz |λd|∑
d|Pz

λd
d

.

• If ad > 0, then
∑
k|d λd = 0.

• If λd 6= 0, then y
d −

∑
d|k ak =

1 λd > 0,

−1 λd < 0.

103
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Unfortunately, once z gets large this leads to an exponentially large linear program. In order to

make the computation reasonable, we restrict the search by requiring that the λds and the ads are

supported on d ≤ zO(1). If we make the support too small, then we will find no solutions to system

of constraints above.

The only remaining difficulty is that checking whether the λd really form a valid lower bound

sieve still requires checking exponentially many conditions. In the case that the λd happen to form

a combinatorial sieve, this will follow from the stronger (and much easier to verify) constraint

p < z & (q | d =⇒ p < q) =⇒ λd + λpd ≤ 0.

Otherwise, we can attempt to check that the λd form a valid lower bound sieve by hand after

verifying that ∑
k|d

λk ≤ 0

for 1 < d ≤ zO(1), hoping against hope that the optimal sieve follows some sort of human-

understandable principles.

The results of the computation end up being somewhat underwhelming: for all z ≤ 1225, the

optimal lower bound sieve ends up being combinatorial, and beyond this point the computations

start to need too much memory to continue. At this point, it is tempting to conjecture that (in the

case of the linear sieve) the optimal lower bound sieve is always combinatorial. Surprisingly, this

turns out not to be the case!

Proposition 41. If we take z = 3185, so that π(z) = 450, then the optimal lower bound sieve is

not combinatorial.

Proof. From the theory laid out in the previous chapter, we can quickly compute that the optimal

combinatorial lower bound sieve gives

min
λ comb

∑
d|Pz |λd|∑
d|Pz

λd
d

= w(3185) =
27,026

59.7432...
= 1,614,620.4...,

so all we have to do is exhibit a sieve that beats this bound. Since

59 · 43 · w(43) = 59 · 43 · 52

12.2553...
= 1,616,777.4... > w(3185) > 1,294,059.1... = 59 · 41 · w(41),

we have λ59·q = 1 if and only if q ≤ 41 in the optimal combinatorial sieve. The idea is to modify the

combinatorial lower bound sieve by using the upper bound sieve iteration rule

S(A59, 59) ≤ S(A59, 41)− 1

2

∑
q∈{47,43,41}

S(A59·q, 41) +
1

2
S(A59·47·43·41, 41).
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Our new sieve has sieve weights given by

λ′d =



µ(d) d ∈ D−3185,w(3185), 59 · 41 - d,
1
2 d ∈ 59 · {47, 43, 41} · D−41,w(41),

− 1
2 d = 59 · 47 · 43 · 41,

0 else.

Since |D−41,w(41)| = 48 and
∑
d∈D−

41,w(41)

µ(d)
d = 11.1449..., we get

∑
d|P3185

|λ′d|∑
d|P3185

λ′d
d

=
|D−3185,w(3185)|+

1
2 |D

−
41,w(41)|+

1
2∑

d∈D−
3185,w(3185)

µ(d)
d + 1

2 ·
1
59 ((

∑
d∈D−

41,w(41)

µ(d)
d )( 1

47 + 1
43 −

1
41 )− 1

47·43·41 )

=
27,026 + 1

2 · 48 + 1
2

1
59.7432... + 1

2 ·
1
59 ( 1

11.1449... (
1
47 + 1

43 −
1
41 )− 1

47·43·41 )

= 1,614,616.5... < 1,614,620.4... = w(3185).

We can easily generalize the calculation in the previous proposition, replacing 47, 43, 41 by any

three consecutive primes p > q > r and replacing 59 by any number d ∈ D−z,w(z) having an odd

number of prime factors all of which are greater than p, such that

|D−r,w(r)|+ 1

(
∑
d∈D−

r,w(r)

µ(d)
d )( 1

p + 1
q −

1
r )− 1

pqr

<
w(z)

d
< qw(q).

Plugging in the approximations w(q) � q2, w(r) � r2, the outer inequality is approximately equiva-

lent to
r2

1
p + 1

q −
1
r

≤ q3,

and this is satisfied to first order whenever we have p + r < 2q. So we can expect this to occur

whenever q − r ≈ log(q) and p− q = O(1), which is something we should expect to occur infinitely

often.

8.2 Parity problem

In this section, we’ll follow the argument of Section 16 of [28] to show that there is no way to improve

the main terms F1(s), f1(s) beyond the bounds we get from the β-sieve.

The argument goes by introducing two weighted sets: we let A+ be the weighted set of integers

between 1 and y with the weight attached to n given by 1 − λ(n), where λ(n) = (−1)Ω(n) is the
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Liouville function, and let A− be similar with the weight of n given by 1 + λ(n). Set

π±(y, z) = S(A±, z).

These functions are invariant under Buchstab iteration:

π±(y, z) = π±(y, w)−
∑

w<p<z

π∓(y/p, p),

and by the prime number theorem, for 1 < s < 3 we have

π+(y, z) = 2(π(y)− π(z)) =
2eγ

s

y

eγ log(z)
+

2

s2

y

log(z)2
+O

(
y

log(z)3

)
,

so (by an induction on bsc) we see that for any fixed s > 1 we have

π+(y, z) = F (s)
y

eγ log(z)
+ 2H(s)

y

log(z)2
+O

(
y

log(z)3

)
, (8.1)

π−(y, z) = f(s)
y

eγ log(z)
− 2h(s)

y

log(z)2
+O

(
y

log(z)3

)
, (8.2)

where F, f,H, h are defined as in Section 7.3.

In order to finish the argument, we need to check that the weighted sets A± have sufficiently

small remainder terms. It’s clear that we do not have∣∣∣|A±d | − y

d

∣∣∣� 1,

so we will instead appeal to Corollary 8 to see that we just need to check that we have∣∣∣|A±d | − y

d

∣∣∣� y

d log(y/d)2+ε

for some ε > 0. From the definition of A±, we see that this is equivalent to showing that∣∣∣ ∑
n≤y/d

λ(n)
∣∣∣� y

d log(y/d)2+ε
.

This bound is a well-known consequence of the zero-free region for the ζ function, even if we take ε

to be arbitrarily large.

Although the argument above shows that we can’t hope to improve on the main terms of the

sieve when κ = 1, it doesn’t show anything about whether we can improve on the error term. So

although this rules out the possibility of showing that j(Pz) � z2−ε using standard sieve-theoretic

methods, it doesn’t rule out the possibility of showing that, say, j(Pz)� z2

log(log(z)) .
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8.3 Better bounds via smoothing the interval

Recall the better bound on the Jacobsthal function we got by smoothing the interval.

Proposition 42 (Corollary 2). If λd is a lower bound sieve with a positive main term, then

j(Pz) ≤

√√√√∑d|Pz |λd|d∑
d|Pz

λd
d

Mimicking the theory of the previous chapter, we can prove the following result.

Proposition 43. If we choose sieve weights λd for d | Pz defining a combinatorial lower bound sieve

with
∑
d
λd
d > 0 in order to minimize the quantity

w2(z) = min
(λd)d|Pz comb. lower bound sieve

√√√√∑d|Pz |λd|d∑
d|Pz

λd
d

,

then for each d with an even number of prime factors, with p the least prime dividing d, we have

λd = −λd/p ⇐⇒ dw2(p) < w2(z).

More explicitly, if d = p1 · · · pm with z > p1 > · · · > pm, then

λd =

µ(d) ∀k s.t. 2k ≤ m, p1 · · · p2kw2(p2k) < w2(z),

0 otherwise.

A minor modification to the algorithm described in the previous chapter lets us efficiently com-

pute w2(z). The next table has the results of these numerical calculations.
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p w2(p)
∑
d |λd|d

(∑
d
λ(d)
d

)−1

2 log(p)2 p2

w2(p)

2 1 1 1 0.96 4

3 2.44948 3 2 2.41 3.67423

5 6 12 3 5.18 4.16666

7 10.7570 27 4.285714 7.57 4.55514

11 17.2183 48 6.176470 11.49 7.02739

101 657.457 15,819 27.324799 42.59 15.5158

1,009 37,892.1 17,739,135 80.940337 95.68 26.8678

10,007 3,057,053.2 59,316,124,245 157.555383 169.68 32.7570

100,003 270,233,209.1 2.846900× 1014 256.510463 265.09 37.0072

1,000,003 2.538610× 1010 1.722138× 1018 374.217331 381.73 39.3918

10,000,019 2.469099× 1012 1.183945× 1022 514.926644 519.58 40.5007

100,000,007 2.430356× 1014 8.759595× 1025 674.304411 678.64 41.1462

1,000,000,007 2.402520× 1016 6.748962× 1029 855.257961 858.90 41.6229

10,000,000,019 2.383290× 1018 5.373584× 1033 1057.036090 1060.37 41.9587

Conjecture 5. As p→∞, if the λds are chosen as in the definition of w2(p), then we have

(∑
d

λd
d

)−1

= 2 log(p)2 +O(1).

Proposition 44. If z > 2, then j(Pz) ≤
√

2
3w2(z).

Proof. We just need to show that j(Pz/2) ≤ w2(z)/
√

6. This will follow if we can show that for odd

d, we have λ2d = −λd, and we check this as in Proposition 38.

Corollary 9. Every interval of length 1.95 × 1018 contains an integer which has no prime divisor

below 1010.

Conjecture 6. For p sufficiently large, we have

41 <
p2

w2(p)
< 50.

In patricular, for z large we have j(Pz) ≤ z2

50 .

Further improvements can be made by using Theorem 17 in place of Corollary 2. It seems

plausible that a very careful analysis might lead to the asymptotic bound j(Pz) ≤ z2

100 for z sufficiently

large.



Chapter 9

Sifting Iterations

9.1 Simple upper bound iteration

Theorem 34. For any w ≤ z, we have

S(A, z) ≤ S(A,w)− 2

3

∑
w≤p<z

S(Ap, w) +
1

3

∑
w≤q<p<z

S(Apq, w),

where p, q run over primes.

Proof. Let a ∈ A. We need to show that the number of times a is counted on the left hand side of

the above is at least the number of times a is counted on the right. If a has any prime factors below

w, then both quantities are clearly zero, so assume that a is has no prime factors below w. Suppose

a has exactly k prime factors between w and z. If k = 0 then both sides count a once. Thus we just

need to check that for any integer k ≥ 1 we have

0 ≤ 1− 2

3
k +

1

3

(
k

2

)
,

which follows from the identity

1− 2

3
k +

1

3

(
k

2

)
=

(
1− k

2

)(
1− k

3

)
.

Corollary 10. For any real t ≥ s ≥ 2, we have

sκFκ(s) ≤ tκFκ(t)− 2

3
κ

∫
1
t<x<

1
s

tκfκ(t(1− x))
dx

x
+

1

3
κ2

∫∫
1
t<y<x<

1
s

tκFκ(t(1− x− y))
dx

x

dy

y
.

Remark 4. The optimal w in Theorem 34 above appears to be w = y
zβ

, which corresponds to taking

109
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t = s
s−β . Thus this upper bound iteration tends to be useful only for 2 ≤ s ≤ β + 1.

9.1.1 Analogous lower bound iteration

Theorem 35. For any w ≤ z2, we have

S(A, z) ≥ S
(
A,
√
w
)
−

∑
√
w≤p<z

S
(
Ap,

w

p

)
+

5

6

∑
w
p ≤q<p<z

S
(
Apq,

w

p

)
− 2

3

∑
w
p ≤r<q<p<z

qr<w

S
(
Apqr,

w

p

)
− 1

2

∑
w
q ≤r<q<p<z

S
(
Apqr,

w

p

)
,

where p, q, r run over primes.

Proof. Let a ∈ A. First suppose that a has no prime factors below
√
w, and has exactly k prime

factors between
√
w and z. If k is 0, then both sides count a once. Otherwise, we need to check that

for an integer k ≥ 1 we have

0 ≥ 1− k +
5

6

(
k

2

)
− 1

2

(
k

3

)
,

and this follows from the identity

1− k +
5

6

(
k

2

)
− 1

2

(
k

3

)
= (1− k)

(
1− k

3

)(
1− k

4

)
.

Now suppose that a has smallest prime factor s <
√
w. We group together all of the summands

on the right hand side with a common p, p | a. In order for any such summand to be nonzero, we

must have s ≥ w
p , or equivalently p ≥ w

s . Suppose that a has exactly k prime factors strictly below

p. Then the number of times a is counted in such summands is at most

−1 +
5

6
k − 1

2

(
k

2

)
= −

(
1− 3k

4

)(
1− k

3

)
,

and this is at most 0 unless k = 2. Thus the only bad case occurs when p is the third smallest prime

factor of a, q is the second smallest prime factor of a, and r = s is the smallest prime factor of a. If

qr < w, then the contribution from these summands is just

−1 +
5

6
· 2− 2

3
= 0,

so the bad case only occurs when qr ≥ w. But then since q ≥ w
r = w

s , we can combine this bad

group of summands with the group of summands where p is replaced by q, and the total number of
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times a is counted in the two groups becomes(
−1 +

5

6
· 2− 1

2

)
+

(
−1 +

5

6

)
=

1

6
− 1

6
= 0.

Corollary 11. For any real s ≥ t with 2t ≥ s ≥ 3, we have

sκfκ(s) ≥ (2t)κfκ(2t)− κ
∫

1
2t<x<

1
s

1

( 1
t − x)κ

Fκ

( 1− x
1
t − x

)dx
x

+
5

6
κ2

∫∫
1
t−x<y<x<

1
s

1

( 1
t − x)κ

fκ

(1− x− y
1
t − x

)dx
x

dy

y

− 2

3
κ3

∫∫∫
1
t−x<z<y<x<

1
s

1

( 1
t − x)κ

Fκ

(1− x− y − z
1
t − x

)dx
x

dy

y

dz

z

+
1

6
κ3

∫∫∫
1
t−y<z<y<x<

1
s

1

( 1
t − x)κ

Fκ

(1− x− y − z
1
t − x

)dx
x

dy

y

dz

z
.

Remark 5. As with Theorem 34, it seems that the optimal w in Theorem 35 is w = y
zβ

, corresponding

to t = s
s−β . Thus this lower bound iteration tends to be useful only when β + 1 ≤ s ≤ β + 2.

9.1.2 Two miracles at κ = 1

When κ = 1, the β-sieve produces the optimal functions f(s) = f1(s), F (s) = F1(s) (see Selberg

[28]). Furthermore, we have the more precise error terms

f(s)
y

eγ log(z)
− (c+ o(1))h(s)

y

log(z)2
≤ S(A, z) ≤ F (s)

y

eγ log(z)
+ (c+ o(1))H(s)

y

log(z)2
,
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where c is a computable constant (in fact a more precise result can be found in Iwaniec [14]). The

functions f, F, h,H are given by

F (s) =
2eγ

s
1 ≤ s ≤ 3

d

ds
(sF (s)) = f(s− 1) s ≥ 3

f(s) =
2eγ log(s− 1)

s
2 ≤ s ≤ 4

d

ds
(sf(s)) = F (s− 1) s ≥ 2

H(s) =
1

s2
1 ≤ s ≤ 3

d

ds

(
s2H(s)

)
= −sh(s− 1) s ≥ 3

h(s) =
1

s2

(
1 +

1

s− 1
− log(s− 1)

)
2 ≤ s ≤ 4

d

ds

(
s2h(s)

)
= −sH(s− 1) s ≥ 2

It’s natural to ask what happens to these functions when we apply the new upper and lower

bound iterations to them.

Theorem 36. If κ = 1, 5
2 ≤ s ≤ 3, and t = s

s−2 , then the two sides of the inequality in Corollary

10 are precisely equal, that is

sF (s) = tF (t)− 2

3

∫
1
t<x<

1
s

tf(t(1− x))
dx

x
+

1

3

∫∫
1
t<y<x<

1
s

tF (t(1− x− y))
dx

x

dy

y
.

Furthermore, in this case even the error terms match up:

s2H(s) = t2H(t) +
2

3

∫
1
t<x<

1
s

t2h(t(1− x))
dx

x
+

1

3

∫∫
1
t<y<x<

1
s

t2H(t(1− x− y))
dx

x

dy

y
.

Proof. Consider the right hand side of the first claimed equality as a function Φ(s, t) of s and t.

Since sF (s) = 2eγ is constant for s ≤ 3, it’s enough to check that ∂Φ
∂s = ∂Φ

∂t = 0 when t = s
s−2 . We

have
∂Φ

∂s
=

2

3

t

s
f

(
t

(
1− 1

s

))
− 1

3

∫
1
t<x<

1
s

t

s
F

(
t

(
1− 1

s
− x
))

dx

x
,
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and up to a multiple of 2eγ

s−1 this is equal to

2

3
log

(
t

(
1− 1

s

)
− 1

)
− 1

3

(
log

(
t− s

s− 1

)
− log

(
s− s

s− 1

))
=

1

3
log

(
t
s− 1

s
− 1

)
+

1

3
log(s− 2),

which is indeed 0 when t = s
s−2 . In order to calculate ∂Φ

∂t , first note that since 5
2 ≤ s we have

t = s
s−2 ≤ 5, so for any x, y > 1

t we have t(1− x− y) ≤ t− 2 ≤ 3, so

∂

∂t
(tF (t(1− x− y))) = 0.

Thus we have

∂Φ

∂t
= f(t− 1)− 2

3
f(t− 1)− 2

3

∫
1
t<x<

1
s

F (t(1− x)− 1)
dx

x
+

1

3

∫
1
t<x<

1
s

F (t(1− x)− 1)
dx

x
+ 0,

and up to a multiple of 2eγ

t−1 this is equal to

1

3
log(t− 2)− 1

3

(
log

(
t− t

t− 1

)
− log

(
s− t

t− 1

))
=

1

3
log

(
s
t− 1

t
− 1

)
,

which is also equal to 0 when t = s
s−2 .

The second claim is left as an involved exercise to the reader (alternatively, one can use the

method of proof of the next theorem).

Since the lower bound iteration is much more complicated, we need a better method of checking

that it has the linear sieve as a fixed point. For this we use the following weighted sets, introduced

by Selberg [28] in order to explain the parity problem: let A+ be the weighted set of integers between

1 and y with the weight attached to n given by 1 − λ(n), where λ(n) = (−1)Ω(n), and let A− be

similar with the weight of n given by 1 + λ(n). Set

π±(y, z) = S(A±, z).

These functions are invariant under Buchstab iteration:

π±(y, z) = π±(y, w)−
∑

w<p<z

π∓(y/p, p),
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and by the prime number theorem, for 1 < s < 3 we have

π+(y, z) = 2(π(y)− π(z)) =
2eγ

s

y

eγ log(z)
+

2

s2

y

log(z)2
+O

(
y

log(z)3

)
,

so for all s > 1 we have

π+(y, z) = F (s)
y

eγ log(z)
+ 2H(s)

y

log(z)2
+O

(
y

log(z)3

)
, (9.1)

π−(y, z) = f(s)
y

eγ log(z)
− 2h(s)

y

log(z)2
+O

(
y

log(z)3

)
. (9.2)

Theorem 37. If κ = 1, 7
2 ≤ s ≤ 4, and t = s

s−2 , then the two sides of the inequality in Corollary

11 are equal, that is

sf(s) = 2tf(2t)−
∫

1
2t<x<

1
s

1
1
t − x

F
( 1− x

1
t − x

)dx
x

+
5

6

∫∫
1
t−x<y<x<

1
s

1
1
t − x

f
(1− x− y

1
t − x

)dx
x

dy

y

− 2

3

∫∫∫
1
t−x<z<y<x<

1
s

1
1
t − x

F
(1− x− y − z

1
t − x

)dx
x

dy

y

dz

z

+
1

6

∫∫∫
1
t−y<z<y<x<

1
s

1
1
t − x

F
(1− x− y − z

1
t − x

)dx
x

dy

y

dz

z
.

Furthermore, the error terms are equal as well:

s2h(s) = (2t)2h(2t) +

∫
1
2t<x<

1
s

1

( 1
t − x)2

H
( 1− x

1
t − x

)dx
x

+
5

6

∫∫
1
t−x<y<x<

1
s

1

( 1
t − x)2

h
(1− x− y

1
t − x

)dx
x

dy

y

+
2

3

∫∫∫
1
t−x<z<y<x<

1
s

1

( 1
t − x)2

H
(1− x− y − z

1
t − x

)dx
x

dy

y

dz

z

− 1

6

∫∫∫
1
t−y<z<y<x<

1
s

1

( 1
t − x)2

H
(1− x− y − z

1
t − x

)dx
x

dy

y

dz

z
.

Proof. By equations (9.1), (9.2), it’s enough to check that for constant 7
2 < s < 4 and w = y

z2 we
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have

S(A−, z) = S
(
A−,
√
w
)
−

∑
√
w≤p<z

S
(
A+
p ,
w

p

)
+

5

6

∑
w
p ≤q<p<z

S
(
A−pq,

w

p

)
− 2

3

∑
w
p ≤r<q<p<z

qr<w

S
(
A+
pqr,

w

p

)
− 1

2

∑
w
q ≤r<q<p<z

S
(
A+
pqr,

w

p

)
+O

(
y

log(z)3

)
.

We have the easy inequality z >
√
w > y3/14, and for

√
w < p < z we have w

p >
w
z > y1/7 as well as

p
(
w
p

)5

> w5

z4 > y. Thus if n is a number below y which is counted by either side, then every prime

factor of n must be at least y1/7, and Ω(n) must be an even number strictly below max( 14
3 , 1+5) = 6.

We need to estimate the number of ns below y which contribute more to the left and side than

the right hand side. Since the number of nonsquarefree ns which can contribute to either side is at

most 3y6/7, we can assume without loss that n is square free. If n = pq with p > q primes, we must

have z > p in order for n to contribute more to the left side than the right side. The number of

such n is at most z2 < y4/7, so we may assume without loss that n has four distinct prime factors

p > q > r > s, at least one of which is below z (so n isn’t counted on the left hand side at all).

First consider the case s ≥
√
w. Since n ≤ wz2, we have z > q. Then if n has 3 ≤ k ≤ 4 prime

factors below z, n is counted on the right hand side with multiplicity 1−k+ 5
6 ·
(
k
2

)
− 2

3 ·0−
1
2 ·
(
k
3

)
=

(1− k)
(
1− k

3

) (
1− k

4

)
= 0, so we get the same contribution to both sides.

Now suppose that s <
√
w, rs ≥ w. Since n ≤ wz2, we have z > q. Then if n has 3 ≤ k ≤ 4 prime

factors below z, n is counted on the right hand side with multiplicity 0−(k−1)+ 5
6 ·
(
k
2

)
− 2

3 ·0−
1
2 ·
(
k
3

)
=

(1− k)
(
1− k

3

) (
1− k

4

)
= 0, as before.

Next suppose that w > rs and p > z. We must have z > q > w
s in order to get any contribution

from n. Then n is counted on the right hand side with multiplicity 0− 1 + 5
6 · 2−

2
3 · 1−

1
2 · 0 = 0,

so we get the same contribution from both sides.

Thus any bad n must have z ≥ p > q and w > rs, r > s > y1/7. The number of such n is at

most O
(

z
log(z)

z
log(z)

w
log(w)

)
= O

(
y

log(z)3

)
.

9.2 Infinite family of iterations inspired by model problem

Here we will describe an infinite sequence of iteration rules, one for each k ≥ 1, generalizing the

upper and lower bound iteration rules described so far (which correspond to the cases k = 1 and

k = 2). We will also prove an optimality result for these iteration rules.
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Theorem 38. If k ≥ 1 and w ≤ zk, then

(−1)k−1S(A, z) ≤ (−1)k−1S
(
A,w1/k

)
+ (−1)k−2

∑
w1/k≤p1<z

S
(
Ap1

, ( wp1
)1/(k−1)

)
+ · · ·

+
∑(

w
p1···pk−2

)1/2
≤pk−1<···<p1<z

S
(
Ap1···pk−1

, w
p1···pk−1

)

−
(

1− 1

(k+2
2 )

) ∑
w

p1···pk−1
≤pk<···<p1<z

S
(
Ap1···pk ,

w
p1···pk−1

)

+
∑

w
p1···pk−1

≤pk+1<···<p1<z

(
1− #{i ≤ k + 1 | wpi ≤ p1 · · · pk+1}(

k+2
2

) )
S
(
Ap1···pk+1

, w
p1···pk−1

)
.

Proof. It’s enough to prove this when A has just one element, say A = {a}. We may also assume

that a is squarefree, and write a = q1q2 · · · qm with q1 < q2 < · · · < qm and the qis prime. We may

assume also that q1 < z, since otherwise the result is trivial. Thus we just need to prove that the

right hand side is at least 0.

Note that every nonzero summand corresponds to some divisor d = p1 · · · pj of a having j prime

factors, j ≤ k + 1. Our strategy is to combine the nonzero summands into small groups according

to the combinatorial structure of their prime factors, such that each group of summands has a

nonnegative sum.

The first step is to combine the summand corresponding to d = p1 · · · pj with j ≤ k−1 and pj = q1

with the summand corresponding to d/pj , and to note that these two summands exactly cancel each

other out. After this step, the only summands that remain are those which have d = p1 · · · pj with

j ≥ k − 1 and pk−1 > q1.

The next step is to group the summands corresponding to d = p1 · · · pj with j ≥ k− 1, pk−1 = ql

with l > 1, and p1 · · · pk−1 taking some fixed value P with w ≤ Pq1. If l = 2, then the total

contribution from such d is 1

(k+2
2 )

. If l = 3, then the total contribution from such d is

1−
(

1− 1

(k+2
2 )

)
·2+

(
1−#{p ∈ {p1, ..., pk−1, q2, q1} | wp ≤ Pq2q1}(

k+2
2

) )
= −#{i ≤ k − 1 | wpi ≤ Pq2q1}(

k+2
2

) .

If l = 4, then the total contribution from such d is at least

1−
(

1− 1

(k+2
2 )

)
· 3 +

(
1− k+1

(k+2
2 )

)
· 3 =

(
k−1

2

)(
k+2

2

) .
Finally, if l ≥ 5 then the total contribution from such d is easily seen to be positive.

In order to balance out the negative contribution coming from groups corresponding to P =

p1 · · · pk−1, w ≤ Pq1, pk−1 = ql with l = 3, we will assign portions of the positive excess from groups
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corresponding to P s with l = 2 or l = 4 to certain corresponding P s with l = 3.

If P = p1 · · · pk−1, w ≤ Pq1, pk−1 = ql with l = 2 and m ≥ 3 is minimal such that qm does

not divide P , then we group the excess 1

(k+2
2 )

contribution from this P with the contributions

corresponding to P ′ = Pqm/q2 - note that the least prime factor of P ′ is then necessarily equal to

q3.

If P = p1 · · · pk−1, w ≤ Pq1, pk−1 = ql with l = 4, then we take
(k−1

2 )
(k+2

2 )
of the excess contribution

from this P , and divide it into k − 2 pieces of sizes 1

(k+2
2 )
, 2

(k+2
2 )
, ..., k−2

(k+2
2 )

, and we assign the piece of

size i

(k+2
2 )

to P ′i = Pq3/pi+1 (noting once again that P ′i has least prime factor equal to q3).

To finish the argument, we just have to show that for P = p1 · · · pk−1, w ≤ Pq1, pk−1 = ql with

l = 3, the total excess contribution that was assigned to P by the process described in the last two

paragraphs is at least
#{i ≤ k − 1 | wpi ≤ Pq2q1}(

k+2
2

) .

To see this, let m ≥ 4 be minimal such that qm does not divide P (or let m = k + 2 if Pq2q1 = a).

For any 3 ≤ j < m, if we let P ′j = Pq2/qj , then the least prime factor of P ′j is q2, and as long

as wqj ≤ Pq2q1 we have w ≤ P ′jq1 and the excess of 1

(k+2
2 )

corresponding to P ′j is assigned to P .

Additionally (in the case m < k + 2) we let P ′ = Pqm/q3, and we see that the least prime factor of

P ′ is q4, that w ≤ Pq1 < P ′q1, and that k+2−m
(k+2

2 )
of the excess corresponding to P ′ is assigned to P .

Together, we see that the amount of excess which was assigned to P is at least

#{3 ≤ j < m | wqj ≤ Pq2q1}(
k+2

2

) +
k + 2−m(

k+2
2

) ≥ #{i ≤ k − 1 | wpi ≤ Pq2q1}(
k+2

2

) .

9.2.1 Optimality at κ = 1

To see that the kth iteration rule is optimal when we set κ = 1, w = y
z2 , and y = zs with

k+ 3
2 < s < k+ 2, we argue as in Theorem 37 to see that we just need to prove the following bound.

Theorem 39. If A± are weighted sets of integers between 1 and y defined as in the discussion before
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Theorem 37, then for any k ≥ 1, if y = zs with k + 3
2 < s < k + 2 and w = y

z2 , we have

(−1)k−1S(A−
k−1

, z) = (−1)k−1S
(
A−

k−1

, w1/k
)

+ (−1)k−2
∑

w1/k≤p1<z

S
(
A−

k−2

p1
, ( wp1

)1/(k−1)
)

+ · · ·

+
∑(

w
p1···pk−2

)1/2
≤pk−1<···<p1<z

S
(
A+
p1···pk−1

, w
p1···pk−1

)

−
(

1− 1

(k+2
2 )

) ∑
w

p1···pk−1
≤pk<···<p1<z

S
(
A−p1···pk ,

w
p1···pk−1

)

+
∑

w
p1···pk−1

≤pk+1<···<p1<z

(
1− #{i ≤ k + 1 | wpi ≤ p1 · · · pk+1}(

k+2
2

) )
S
(
A+
p1···pk+1

, w
p1···pk−1

)
+O

( y

log(z)3

)
.

Proof. Suppose that a ≤ y is counted a different number of times on both sides of the above. Then

we necessarily have λ(a) = (−1)k, and the least prime dividing a is less than z. In order for the

contribution of a to the right hand side to be positive, there must be primes p1 > · · · > pk−1 dividing

a such that p1 < z and such that the least prime dividing a is at least w
p1···pk−1

, so we conclude that

any prime dividing a must be at least

w

p1 · · · pk−1
>

w

zk−1
=

y

zk+1
= zs−(k+1) >

√
z.

In particular, the number of such a which have a square factor is O( y√
z
), so we may assume without

loss that a is square free. If a has at least k + 4 prime factors, then since a has some collection of

k prime factors whose product is at least w we have a > w
√
z

4
= y, a contradiction. Thus a has

strictly less than k + 4 prime factors, and since λ(a) = (−1)k we see that a has either k or k + 2

prime factors.

If a has exactly k prime factors, then they must all be less than z in order for the contribution

of a to the right hand side to be positive, so a < zk < y
z3/2 , so the number of such a is at most y

z3/2 .

Thus we may assume without loss that a has exactly k+ 2 prime factors, at least k of which are less

than z.

If two of the prime factors of a are ≥ z, then the remaining prime factors of a must have product

at least w, so a > wz2 = y, a contradiction. If one of the prime factors of a is ≥ z and the remaining

k+1 prime factors of a are all < z, then the total contribution of a to the right hand side is precisely

0. Thus, we may assume that all of the prime factors of a are less than z.

If every product of k prime factors of a is ≥ w, then the contribution of a is again precisely

0. Otherwise, we can write a = q1 · · · qk+2 with
√
z < q1 < · · · < qk+2, q1 · · · qk < w, qk+1 < z,

and qk+2 < z. Using an upper bound sieve to bound the number of possible values for q1 · · · qk by
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O( w
log(z) ), we see that the number of such a is O( wz2

log(z)3 ) = O( y
log(z)3 ).

9.3 Working backwards

9.3.1 Setup

Let A be a (possibly weighted) set of whole numbers, and for each positive integer d set Ad = {a ∈
A, d | a}. Let κ be a real number and by abuse of notation let κ : N→ R be a multiplicative function

satisfying 0 ≤ κ(p) < p for all p, and

∑
p≤x

κ(p)
log(p)

p
= (κ+ o(1)) log(x).

Suppose that z, y are such that for every squarefree integer d, all of whose prime factors are less

than z, we have ∣∣∣|Ad| − κ(d)
y

d

∣∣∣ ≤ κ(d), (9.3)

or alternatively such that for some fixed ε > 0 and every such d we have∣∣∣|Ad| − κ(d)
y

d

∣∣∣ ≤ κ(d)
y

d log(y/d)2κ+ε
. (9.4)

In particular, we have |A| = y + O(1) in the first case, or |A| = y + O(y/ log(y)2κ+ε) in the second

case. We want to estimate the quantity

S(A, z) = |{a ∈ A,∀p < z (a, p) = 1}| .

Suppose now that y = zs, s a constant, y, z going to infinity. Define sifting functions fκ(s), Fκ(s) by

(1 + o(1))fκ(s)y
∏
p<z

(
1− κ(p)

p

)
≤ S(A, z) ≤ (1 + o(1))Fκ(s)y

∏
p<z

(
1− κ(p)

p

)
,

with fκ(s) as large as possible (resp. Fκ(s) as small as possible) given that the above inequality

holds for all choices of A satisfying (9.3).

Recall from Section 6.6 that fκ(s) and Fκ(s) can be defined as follows. Let M be the collection

of all finite multisubsets of [0, 1], and for S ∈ M let Σ(S) be the sum of the elements of S and

|S| be the number of elements of S (both counted with multiplicity). When we write sums like∑
A⊆S , we also count subsets A with multiplicity, so such a sum will always have 2|S| summands.

Let λ : M → R be a piecewise continuous function supported on S with Σ(S) ≤ 1, and define a
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function θ :M→ R by

θ(S) =
∑
A⊆S

λ(A).

We say that (λ, θ) forms an upper (resp. lower) bound sieve with sifting limit s if λ is supported

on multisubsets of [0, 1
s ], θ(∅) = λ(∅) ≥ 1 (resp. θ(∅) ≤ 1), and θ(S) ≥ 0 (resp. θ(S) ≤ 0) for all

S ⊆ [0, 1
s ] with |S| ≥ 1. Then

Fκ(s) = inf
(λ,θ)≥0

∞∑
n=0

κn

n!

∫ 1
s

0

· · ·
∫ 1

s

0

θ(x1, ..., xn)
dx1

x1
· · · dxn

xn
, (9.5)

where the infimum is over all upper bound sieves (λ, θ) with sifting limit 1
s , and there is a similar

formula for fκ(s) (note that when fκ(s) = 0, we will typically have λ(∅) = 0).

The Selberg upper bound sieve corresponds to choosing θ = θ′2 for some other sieve (`, θ′), with

` supported on Σ(S) ≤ 1
2 . In terms of the sieve weights λ, this corresponds to

λ(S) =
∑

A∪B=S

`(A)`(B).

In order to describe the weights `, we use the following generalization of the Dickman function. For

s < 0 we set ρκ(s) = 0, for 0 < s ≤ 1 we set ρκ(s) = 1, and for s ≥ 1 we define ρκ(s) by the

differential-difference equation

sκρ′κ(s) = −κ(s− 1)κ−1ρκ(s− 1),

or equivalently by the integral equation

sκρκ(s) =

∫ s

s−1

ρκ(t)dtκ.

When κ is a whole number, the function ρκ(s) has a combinatorial interpretation. Let n be large,

and consider the collection of all ordered pairs (π, c) where π is a permutation of {1, ..., n} and

c : {1, ..., n} → {1, ..., κ} is a compatible coloring of {1, ..., n} (i.e. c(i) = c(π(i)) for all i). Choosing

an ordered pair (π, c) uniformly at random, ρκ(s) is the limit, as n goes to ∞, of the probability

that every cycle of π has length at most n
s .

The optimal choice for the weights ` is given in terms of ρκ by

l(S) = (−1)|S|
∫ s

2−sΣ(S)

0
ρκ(t)dtκ∫ s

2

0
ρκ(t)dtκ

.
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When s goes to ∞ this becomes

l(S) ≈

(−1)|S| if Σ(S) < 1
2 ,

0 else,

and when s ≤ 2 it becomes

l(S) = (−1)|S|(1− 2Σ(S))κ+.

Setting

σκ(s) =

∫ s
2

0
ρκ(t)dtκ

eγκΓ(κ+ 1)
,

we have

s−κσκ(s) =
1

(2eγ)κΓ(κ+ 1)
0 < s ≤ 2,

(s−κσκ(s))′ = −κs−κ−1σκ(s− 2) s ≥ 2,

and the Selberg sieve gives us the upper bound

Fκ(s) ≤ 1

σκ(s)
.

The only case in which this is known to be optimal is when κ = 1 and s ≤ 2, in which case the

Selberg sieve (λS , θS) is given by

λS(S) = (−1)|S|
∑

A∪B=S

(−1)|A∩B|(1− 2Σ(A))+(1− 2Σ(B))+,

θS(S) =

(∑
A⊆S

(−1)|A|(1− 2Σ(A))+

)2

.

For Σ(S) ≤ 1
2 , we have

λS(S) = (−1)|S|
(
1− 4

∑
x∈S

x2
)
.

The β-sieve (λβ , θβ) is given as follows. The formula

λβ(S) =

(−1)|S| if ∀A ⊆ S, |A| odd =⇒ Σ(A) + βmin(A) ≤ 1,

0 else,

gives the upper bound sieve weights, while the lower bound sieve weights are given by the same

formula with “odd” replaced by “even”. Here β is chosen such that β − 1 is the largest zero of the
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function q(s), where q solves the differential-difference equation

(sq(s))′ = κq(s) + κq(s+ 1).

When κ is a half-integer, q(s) is a polynomial of degree 2κ− 1 and β is an algebraic number (see [8]

for details). When κ = 1, we have β = 2.

The β-sieve is best understood in terms of Buchstab iteration:

S(A, z) = |A| −
∑
p<z

S(Ap, p).

This leads to the inequalities

sκfκ(s) ≥ sκ − κ
∫
t>s

tκ−1(Fκ(t− 1)− 1)dt,

sκFκ(s) ≤ sκ + κ

∫
t>s

tκ−1(1− fκ(t− 1))dt.

A variant of Buchstab iteration is given by

S(A, z) = S(A,w)−
∑

w≤p<z

S(Ap, p)

for any w ≤ z. If y = wt and we already have an upper bound sieve (λ+
t , θ

+
t ) with sifting limit t and

lower bound sieves (λ−u , θ
−
u ) with sifting limit u for s− 1 ≤ u ≤ t− 1, the upper bound sieve (λ′, θ′)

we obtain from Buchstab iteration is given by

λ′(S) =

λ
+
t (S) if S ⊆ [0, 1

t ),

−λ−1
x−1

(T ) if S = T ∪ {x}, T ⊆ [0, x], 1
t ≤ x <

1
s .

When κ = 1, the optimal sifting functions f, F are fixed points of Buchstab iteration. To see

they are optimal, we introduce two weighted sets A+, A− satisfying (9.4). Both are supported on

[1, y], with the weight on n given by 1− λ(n) in A+ and given by 1 + λ(n) in A−, where by λ(n) we

mean (−1)Ω(n) (and not a sieve weight). Setting

π±(y, z) = S(A±, z),

we have

π±(y, z) = π±(y, w)−
∑

w<p<z

π∓(y/p, p),



9.3. WORKING BACKWARDS 123

and by the prime number theorem, for 1 < s < 3 we have

π+(y, z) = 2(π(y)− π(z)) =
2eγ

s

y

eγ log(z)
+O

(
y

log(z)2

)
,

so for all s > 1 we have

π+(y, z) = F (s)
y

eγ log(z)
+O

(
y

log(z)2

)
,

π−(y, z) = f(s)
y

eγ log(z)
+O

(
y

log(z)2

)
.

Our strategy for constructing sieves in dimension 1 + ε is to find an optimal upper bound sieve

(λ, θ) in dimension 1 (i.e., a sieve such that the expression inside the infimum on the right hand side

of (9.5) is equal to F (s)) such that the sum

∞∑
n=1

1

(n− 1)!

∫ 1
s

0

· · ·
∫ 1

s

0

θ(x1, ..., xn)
dx1

x1
· · · dxn

xn

is as small as possible, since this sum is the rate of change of the expression inside the infimum on

the right hand side of (9.5) at κ = 1. For (λ, θ) an optimal upper bound sieve with sifting limit

2 ≤ s ≤ 3, set

aθn =
1

n!

∫ 1
2

0

· · ·
∫ 1

2

0

θ(x1, ..., xn)
dx1

x1
· · · dxn

xn
.

We then have aθ0 = 1, aθn ≥ 0, and

eγ = F (2) = 1 + aθ1 + aθ2 + · · · ,

while the quantity we wish to minimize is

aθ1 + 2aθ2 + 3aθ3 + · · · .

Note that this is the same as maximizing the quantity

2eγ − 2− (aθ1 + 2aθ2 + 3aθ3 + · · · ) = aθ1 − aθ3 − 2aθ4 − · · · .

As a consequence, it seems that a good rule of thumb is to simply try to maximize aθ1 =
∫ 1

2

0
θ(x)dxx .

Letting aSn = aθ
S

n , aβn = aθ
β

n , we have

aS1 =
1

2
, aS2 =

π2 − 9

12
≈ 0.0724, aS3 ≈ 0.03966,
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and

aβ1 = log(3/2) ≈ 0.405, aβ2 =
log(3/2)2

2
≈ 0.0822, aβ3 ≈ 0.06705.

Additionally, from the analysis of the Selberg sieve we have

eγ =
∂

∂κ
eγκΓ(κ+ 1)

∣∣∣∣
κ=1

= aS1 + 2aS2 + 3aS3 + · · · .

9.3.2 Constraints on optimal sieves in dimension 1

The “complementary slackness” constraints on optimal solutions to linear optimization problems

imply that if A is a weighted set satisfying (9.4) with S(A, z) maximal and (λ, θ) is an optimal

upper bound sieve, then if for d squarefree we set Sd = { log(p)
log(y) s.t. p | d} we get

p | n, p < z, n ∈ A =⇒ θ(Sn) = 0,

λ(Sd) > 0 =⇒ |Ad| −
y

d
=

y

d log(y/d)2+ε
,

λ(Sd) < 0 =⇒ |Ad| −
y

d
= − y

d log(y/d)2+ε
.

We know that the set A+ maximizes S(A, z) to first order. Since the number of n ∈ A+ with

n ≤ y1−ε is small for any ε > 0, while the number of n ∈ A+ with Sn ≈ S is large if Σ(S) = 1, we

conclude that, at least away from a measure zero set,

Σ(S) = 1, min(S) <
1

s
, |S| odd =⇒ θ(S) = 0 (O)

for any optimal sieve, and it seems that any nice upper bound sieve satisfying (O) is optimal

(although making this precise is tricky).

Proposition 45. If |S| is odd, min(S) < 1
s , and Σ(S) = 1, then θS(S) = 0 and θβ(S) = 0 outside

the measure zero subset where the three smallest elements of S are all equal.

Proof. Although this morally follows from the fact that the Selberg sieve and the β sieve are optimal,

we will give a direct proof. We have

θS(S) =

(∑
A⊆S

(−1)|A|(1− 2Σ(A))+

)2

,

and from Σ(S) = 1 and |S| odd we have

(−1)|A|(1− 2Σ(A))+ + (−1)|S\A|(1− 2Σ(S \A))+ = (−1)|A|(1− 2Σ(A))
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for A ⊆ S. If S = {x1, ..., xn}, then since |S| ≥ 2 we have

∑
A⊆S

(−1)|A|(1− 2Σ(A))+ =
1

2

∑
A⊆S

(−1)|A|(1− 2Σ(A)) =
1

2

∑
A⊆S

(−1)|A| −
n∑
i=1

xi
∑

xi∈A⊆S

(−1)|A| = 0.

Now we turn to θβ(S). Supposing that x1 ≥ · · · ≥ xn, we just need to show that for all A ⊆ S \{xn}
we have λβ(A) 6= 0 ⇐⇒ λβ(A ∪ {xn}) 6= 0. The only case in which this is not obvious is when |A|
is even and Σ(A) + xn + 2xn > 1, and in this case we have

Σ(A) > 1− 3xn ≥ 1− xn − xn−1 − xn−2 = Σ(S \ {xn, xn−1, xn−2}),

so in fact we must have A = S \ {xn}. But then from λβ(A) 6= 0 we must have

x1 + · · ·+ xn−2 + 2xn−2 ≤ 1 = x1 + · · ·+ xn−2 + xn−1 + xn,

so in fact we must have xn−2 = xn−1 = xn.

Proposition 46. If (λ, θ) is an upper bound sieve with sifting limit s satisfying (O), then for any

0 ≤ x < min( 1
s , 1−

2
s ) we have λ(x) = −1.

More generally, if S is a set with min(S) < 1
s and either |S| odd and Σ(S) < 1− 2

s or |S| even and

Σ(S) < 1− 1
s , then θ(S) = 0. In particular, if S is any set such that max(S) < 1

s and Σ(S) < 1− 2
s ,

then λ(S) = (−1)|S|.

Proof. Note that 1−x
2 > 1

s , so for any set A containing 1−x
2 we have λ(A) = 0. Taking S =

{x, 1−x
2 , 1−x

2 } in (O), we have

0 = θ(S) =
∑
A⊆S

λ(A) = 1 + λ(x),

so λ(x) = −1.

The more general statement follows by a similar argument, using the fact that θ(A) = θ(A∩[0, 1
s ])

for every set A.

Since we conjecturally have ||A+
d | −

y
d | ≤

(
y
d

) 1
2 +o(1)

, it seems that the other complementary

slackness condtions should be treated with some care. If we assume that some version of Pólya’s

conjecture is true on average, so that |A+
d | >

y
d for most d having an even number of prime factors

and |A+
d | <

y
d for most d having an odd number of prime factors, then we might conjecture that

(−1)|S|λ(S) ≥ 0 (A)

for optimal upper bound sieves which also have small error terms. It turns out that the Selberg

upper bound sieve (λS , θS) does not satisfy condition (A): taking S to be a set consisting of 9 copies
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of 1
12 , we get

(−1)9λS
({

9 · 1

12

})
= 2

(
9

4

)(
1− 2 · 4

12

)(
1− 2 · 5

12

)
− 9

(
8

4

)(
1− 2 · 5

12

)2

= −7

2
< 0.

On the other hand, the Selberg upper bound sieve does not have a very good error term in comparison

with the β-sieve, which does satisfy (A). Additionally, the Selberg upper bound sieve satisfies (A)

for sets S with Σ(S) ≤ 1
2 .

Generally speaking, linear optimization problems tend to have unique solutions, corresponding

to vertices of some associated polytope. When the solution is nonunique, then the problem is said

to be degenerate - this corresponds to the polytope having a face which is contained in a level set of

the linear function we are trying to optimize. In the case of the linear sieve (i.e. κ = 1), the problem

turns out to be infinitely degenerate. From this point of view, the Selberg upper bound sieve method

corresponds to restricting ourselves to some ellipsoid contained in our polytope. Since the Selberg

upper bound sieve is actually optimal when κ = 1 and s = 2, this means it “should” correspond to

some sort of interior point of the degenerate top face of our polytope. Thus if θS(S) = 0 for sets

S satisfying some simple property, then it seems likely that θ(S) = 0 for any optimal upper bound

sieve and any set S satisfying the same property.

Proposition 47. For |S| ≥ 2, min(S) < 1
s , Σ(S) ≤ 1

2 , we have θS(S) = θβ(S) = 0.

Proof. We have

θS(S) =

(∑
A⊆S

(−1)|A|(1− 2Σ(A))+

)2

,

and from Σ(S) ≤ 1
2 we have (1− 2Σ(A))+ = 1− 2Σ(A) for A ⊆ S. If S = {x1, ..., xn}, then

∑
A⊆S

(−1)|A|(1− 2Σ(A)) =
∑
A⊆S

(−1)|A| − 2

n∑
i=1

xi
∑

xi∈A⊆S

(−1)|A| = 0.

Now we turn to θβ(S). Supposing that x1 ≥ · · · ≥ xn, we just need to show that for all A ⊆ S \{xn}
we have λβ(A) 6= 0 ⇐⇒ λβ(A ∪ {xn}) 6= 0. The only case in which this is not obvious is when |A|
is even and Σ(A) + xn + 2xn > 1, and in this case we have

Σ(S) ≥ nxn ≥ 2xn > 1− (Σ(A) + xn) ≥ 1− Σ(S) ≥ 1

2
,

a contradiction.

Based on this, we conjecture that any optimal upper bound sieve has the property

|S| ≥ 2, min(S) <
1

s
, Σ(S) ≤ 1

2
=⇒ θ(S) = 0. ( 1

2 )
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If we assume ( 1
2 ), we get the nice formula

max(S) <
1

s
, Σ(S) ≤ 1

2
=⇒ λ(S) = (−1)|S|

(
1−

∑
x∈S

θ(x)
)

which determines many of the sieve weights in terms of the sieve weights attached to singletons, so

it seems that the most important thing to focus on is the function θ(x). By Proposition 46, we have

θ(x) = 0 for 0 ≤ x < min( 1
s , 1−

2
s ), and since the sifting limit is s we have θ(x) = 1 for x > 1

s . The

Selberg upper bound sieve has

θS(x) =

4x2 if 0 ≤ x ≤ 1
2 ,

1 else,

while the β-sieve has

θβ(x) =

0 if 0 ≤ x ≤ min( 1
s ,

1
3 ),

1 else.

The following conjecture is natural, if unjustified:

x ≥ y =⇒ θ(x) ≥ θ(y). (>)

Now we consider the support of λ. In the case of the Selberg upper bound sieve, we clearly have

λS(S) 6= 0 =⇒ ∃A ⊆ S, Σ(A) ≤ 1

2
, Σ(S \A) ≤ 1

2
.

The β-sieve has a more interesting constraint on its support.

Definition 18. A set S is flexible if for every 0 ≤ x ≤ 1 there exists A ⊆ S such that Σ(A) ≤ x

and Σ(S \A) ≤ 1− x.

Proposition 48 (from section 12.7 of [8]). If for every A ⊆ S we have Σ(A) + min(A) ≤ 1, then S

is flexible. In particular, if λβ(S) 6= 0 then S is flexible.

Proof. Set u = min(S), S′ = S \ {u}. By induction on |S|, we see that S′ is flexible. Let 0 ≤ x ≤ 1,

and suppose that A′ ⊆ S′ satisfies Σ(A′) ≤ x, Σ(S′ \A′) ≤ 1− x. Since

Σ(A′ ∪ {u}) + Σ((S′ \A′) ∪ {u}) = Σ(S) + min(S) ≤ 1

by assumption, we must have one of Σ(A′ ∪ {u}) ≤ x, Σ((S′ \A′) ∪ {u}) ≤ 1− x, so at least one of

the choices A = A′ or A = A′ ∪ {u} satisfies Σ(A) ≤ x, Σ(S \A) ≤ 1− x.

Now suppose that λβ(S) 6= 0, so that for any A ⊆ S with |A| odd we have Σ(A) + 2 min(A) ≤ 1.
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Then for any A ⊆ S with |A| even, if A′ = A \ {min(A)} then |A′| is odd, so

Σ(A) + min(A) = Σ(A′) + 2 min(A) ≤ Σ(A′) + 2 min(A′) ≤ 1.

It seems that as s decreases from∞ to 2, the supports of optimal sieves get gradually less flexible,

although it isn’t clear what the correct weakening of flexibility should be. The following conjecture

seems plausible:

S ⊆
[
1− 2

s
,

1

s

]
, λ(S) 6= 0 =⇒ Σ(S) ≤ 2

s
. (F)

9.3.3 Upper bound iteration rules

Here by an iteration rule we mean a special type of sieve, used to get new bounds on S(A, z) given

upper and lower bounds on S(Ad, w) for squarefree numbers d having all their prime factors between

w and z. Supposing y = zs = wt, if (λit, θit) is an upper bound sieve such that every set in the

support of λit is contained in [ 1
t ,

1
s ], then the corresponding iteration rule is given by

S(A, z) ≤
∑

d squarefree
p|d =⇒ w≤p<z

λit(Sd)S(Ad, w),

where Sd = { log(p)
log(y) s.t. p | d}. This leads to an iterative inequality on Fκ(s) in terms of Fκ, fκ

in an obvious way. The main advantage of using iteration rules is that it is typically very easy to

check that (λit, θit) is a valid upper bound sieve. Our main concern is with iteration rules which are

optimal when κ = 1, i.e. such that the pair of functions F, f is a fixed point of the iteration rule.

Theorem 40. Suppose that the upper bound sieve (λit, θit) has λit supported on sets contained in

[1− 2
s ,

1
s ], and satisfies the conditions (O), (A), (F) for all sets S ⊆ [1− 2

s ,
1
s ]. Then the corresponding

iteration rule is optimal in dimension κ = 1.

Proof. Set t = 1
1− 2

s

, w = y
1
t . By condition (A), the iteration rule is given to first order by

F (s)
y

eγ log(z)
≤

∑
µ(d)=1

p|d =⇒ w≤p<z

λit(Sd)F (t−tΣ(Sd))
y/d

eγ log(w)
+

∑
µ(d)=−1

p|d =⇒ w≤p<z

λit(Sd)f(t−tΣ(Sd))
y/d

eγ log(w)
.

The main idea is to exploit the fact that S(A+, z) = F (s) y
eγ log(z) + O

(
y

log(z)2

)
and S(A−, z) =

f(s) y
eγ log(z) + O

(
y

log(z)2

)
for all s > 1. Since λit(Sd) 6= 0 implies t − tΣ(Sd) ≥ t − t · 2

s = 1 by
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condition (F), we just need to check that

S(A+, z) =
∑

µ(d)=1
p|d =⇒ w≤p<z

λit(Sd)S(A+
d , w) +

∑
µ(d)=−1

p|d =⇒ w≤p<z

λit(Sd)S(A−d , w) +O

(
y

log(z)2

)
.

Since nonsquarefree numbers don’t have a large contribution to either side, and since A+
d is supported

on numbers with an odd number of prime factors while A−d is supported on numbers with an even

number of prime factors, this follows from condition (O).

We can describe the sieve weights produced by an iteration rule as follows. For every u, let

(λ+
u , θ

+
u ) be an upper bound sieve with sifting limit u and let (λ−u , θ

−
u ) be a lower bound sieve with

sifting limit u. Let (λit, θit) be our iteration rule sieve, with λit supported on sets contained in [ 1
t ,

1
s ].

Then the resulting upper bound sieve (λ, θ) is given by

λ(S) =

λ
it(S ∩ [ 1

t ,
1
s ])λ+

t−tΣ(S∩[ 1
t ,

1
s ])

(S \ [ 1
t ,

1
s ]) if λit(S ∩ [ 1

t ,
1
s ]) ≥ 0,

λit(S ∩ [ 1
t ,

1
s ])λ−

t−tΣ(S∩[ 1
t ,

1
s ])

(S \ [ 1
t ,

1
s ]) if λit(S ∩ [ 1

t ,
1
s ]) ≤ 0.

In particular, for a singleton set we have

θ(x) =


θ+
t (x) if 0 ≤ x < 1

t ,

θit(x) if 1
t ≤ x ≤

1
s ,

1 else.

9.4 The range 5
2 ≤ s ≤ 3 and probability distributions on the

triangle

We will assume throughout that we are working with an optimal upper bound sieve (λ, θ) with

sifting limit 5
2 ≤ s ≤ 3 satisfying conditions (O), (A), (F), and trying to maximize the quantity a1 =∫ 1

2

0
θ(x)dxx subject to these constraints. By Theorem 40, we only need to consider the constraints

involving sets S contained in [1− 2
s ,

1
s ].

By condition (F), if S ⊆ [1− 2
s ,

1
s ] and λ(S) 6= 0, then |S| < 4 since 4(1− 2

s ) ≥ 2
s for s ≥ 5

2 . By

condition (A) we have λ(S) ≤ 0 if |S| = 3, so if for some x, y, z ∈ [1 − 2
s ,

1
s ] we had λ(x, y, z) < 0,

then we would have

θ({k · x, k · y, k · z}) =
∑

0≤a,b,c≤k

(
k

a

)(
k

b

)(
k

c

)
λ({a · x, b · y, c · z}) ≤ k3λ(x, y, z) +O(k2) < 0

for k sufficiently large, a contradiction. Thus λ(x, y, z) = 0 for x, y, z ∈ [1− 2
s ,

1
s ].
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Note that for any x, y, z ∈ [1− 2
s ,

1
s ], λ(x, y, z) = 0 implies that

θ(x, y, z) = θ(x, y) + θ(x, z) + θ(y, z)− θ(x)− θ(y)− θ(z) + 1.

Applying Proposition 46 (which used condition (O)) to the set {x, y} of size 2, we find

x+ y ≤ 1− 1

s
=⇒ θ(x, y) = 0.

Using condition (O) directly, we also have

x+ y + z = 1, x, y, z ≤ 1

s
=⇒ θ(x) + θ(y) + θ(z) = θ(x, y) + θ(x, z) + θ(y, z) + 1.

It’s convenient to replace the interval [1− 2
s ,

1
s ] by the interval [0, 1]. Let rs(x) = 1− 2

s + ( 3
s − 1)x.

Let f(x) = θ(rs(x)), and let g(x, y) = θ(rs(x), rs(y)). Note that rs(
2
3 ) = 1

3 , so if x+ y + z = 2 then

rs(x) + rs(y) + rs(z) = 1.

Theorem 41. Suppose f : [0, 1]→ R≥0 and g : [0, 1]2 → R≥0 are nonnegative functions such that

x+ y ≤ 1 =⇒ g(x, y) = 0,

∀x, y, z ∈ [0, 1] f(x) + f(y) + f(z) ≤ g(x, y) + g(x, z) + g(y, z) + 1,

and

x+ y + z = 2 =⇒ f(x) + f(y) + f(z) = g(x, y) + g(x, z) + g(y, z) + 1.

Then we have

a) f is nondecreasing,

b) for every integer n > 1,

f( 1
n ) + · · ·+ f(n−1

n )

n− 1
≤ 1

3
≤
f( 0

n ) + · · ·+ f(nn )

n+ 1
,

c) f is integrable and
∫ 1

0
f(x)dx = 1

3 ,

d) g is nondecreasing in either argument, and moreover satisfies the inequality

w ≤ x, y ≤ z =⇒ g(x, z)− g(w, z) ≥ g(x, y)− g(w, y),

e) if f, g are continuous then they come from a symmetric probability distribution µ supported on
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the simplex {a, b, c ∈ [0, 1]3 | a+ b+ c = 2}, according to the formulae

f(x) = Pµ(a,b,c)[a ≤ x], g(x, y) = Pµ(a,b,c)[a ≤ x ∧ b ≤ y]?

Proof. Part a): suppose 0 ≤ a < b ≤ 1, we will show that f(a) ≤ f(b). Choose a nonnegative integer

k such that

2a− b < k(b− a) < b.

For each 0 ≤ i ≤ k, set

x2i = 1− b+ (k − 2i)(b− a)

2
, x2i+1 = 1− b+ (2i− k)(b− a)

2
.

Note that by the choice of k we have a+x0 = a+x2k+1 < 1 and 1−b < xi < 1 for all 0 ≤ i ≤ 2k+1.

Furthermore, for each i we have b+x2i+x2i+1 = 2 and a+x2i−1 +x2i = 2. Thus, for each 0 ≤ i ≤ k
we have

f(b) + f(x2i) + f(x2i+1) = g(b, x2i) + g(b, x2i+1) + g(x2i, x2i+1) + 1,

f(a) + f(x2i) + f(x2i+1) ≤ g(a, x2i) + g(a, x2i+1) + g(x2i, x2i+1) + 1,

and for each 1 ≤ i ≤ k we have

f(b) + f(x2i−1) + f(x2i) ≤ g(b, x2i−1) + g(b, x2i) + g(x2i−1, x2i) + 1,

f(a) + f(x2i−1) + f(x2i) = g(a, x2i−1) + g(a, x2i) + g(x2i−1, x2i) + 1.

Adding together the inequalities and subtracting the equalities, we get

f(a) ≤ f(b) + g(a, x0) + g(a, x2k+1)− g(b, x0)− g(b, x2k+1)

= f(b)− g(b, x0)− g(b, x2k+1) ≤ f(b).

Part b): first we prove the left hand inequality. For every ordered triple of integers 0 < i, j, k < n

satisfying i+ j + k = 2n, we have an equality

f( in ) + f( jn ) + f( kn ) = g( in ,
j
n ) + g( in ,

k
n ) + g( jn ,

k
n ) + 1.

Also, for every ordered triple 0 < i, j, k < n satisfying i+ j + k = 2n− 1, we have the inequality

f( in ) + f( jn ) + f( kn ) ≤ g( in ,
j
n ) + g( in ,

k
n ) + g( jn ,

k
n ) + 1.

Adding the inequalities and subtracting the equalities, and using g( in ,
j
n ) = 0 when i+ j = n, gives
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the left hand inequality of b). For the right hand inequality of b) one uses equalities corresponding

to triples 0 ≤ i, j, k ≤ n with i+ j + k = 2n, and inequalities corresponding to triples 0 ≤ i, j, k ≤ n
with i+ j + k = 2n+ 1.

Part c) follows immediately from parts a) and b).

The proofs of parts d) and e) can be found in the second appendix.

Thus θ(x) is increasing, and the average value of θ(x) on the interval [1− 2
s ,

1
s ] is 1

3 . Since 1
x is

decreasing, in order to maximize
∫ 1
s

1− 2
s

θ(x)dxx we must take θ(x) = 1
3 identically on this interval. In

terms of λ, this is corresponds to taking λ(x) = − 2
3 , λ(x, y) = 1

3 for all x, y ∈ [1 − 2
s ,

1
s ], which we

can easily check gives an optimal upper bound sieve iteration. For s = 5
2 the resulting sieve has

a1 =

∫ 1
2

0

θ(x)
dx

x
=

log(2)

3
+ log

(
5

4

)
≈ 0.454.

9.5 Further iteration rules as we approach s = 2?

First attempt:
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Theorem 42. If A is such that |Ad| = 0 for all d with d ≥ y 13
12 , and if z

12
5 < y < z

5
2 , then

S(A, z) ≤ S(A,
y

z2
)− 4

5

∑
y

z2
≤p< z3

y

S(Ap,
y

z2
)− 2

3

∑
z3

y ≤p<
y2

z4

S(Ap,
y

z2
)

− 8

15

∑
y2

z4
≤p<z

S(Ap,
y

z2
) +

3

5

∑
y

z2
≤q<p< z3

y

S(Apq,
y

z2
)

+
7

15

∑
y

z2
≤q< z3

y ≤p<
y2

z4

S(Apq,
y

z2
) +

1

3

∑
y

z2
≤q< z3

y

y2

z4
≤p<z

S(Apq,
y

z2
)

+
1

3

∑
z3

y ≤q<p<
y2

z4

S(Apq,
y

z2
) +

4

15

∑
z3

y ≤q<
y2

z4
≤p<z

S(Apq,
y

z2
)

+
1

5

∑
y2

z4
≤q<p<z

S(Apq,
y

z2
)− 2

5

∑
y

z2
≤r<q<p< z3

y

pqr2<z2

S(Apqr,
y

z2
)

− 4

15

∑
y

z2
≤r<q< z3

y ≤p<
y2

z4

(
1− 3 log(qr)

8 log(y/p)

)
S(Apqr,

y

z2
)

+
1

5

∑
y

z2
≤s<r<q<p< z3

y

pqr2<z2

S(Apqr,
y

z2
)

+
1

10

∑
y

z2
≤s<r<q< z3

y ≤p<
y2

z4

(
1− log(qrs)

log(y/p)

)
+

S(Apqr,
y

z2
).

9.6 Numerical computations at κ = 3
2

When κ = 3
2 , we have αDκ = 3.9114..., βDκ = 3.11582... [3]. In particular, we have αDκ < βDκ + 1, so

Corollary 10 can be applied to s in the range αDκ < s < βDκ + 1 with t = s
s−βDκ

. The improvement to

the value of Fκ(s) in this range is nonzero, but very small. Combining this with ordinary Buchstab

iteration for the lower bound, one can show that β( 3
2 ) < 3.11570.

If we apply the iteration from Corollary 11 directly to FDκ , f
D
κ , then the values of s, t for which

the quantity sκfκ(s) is improved the most are given by s ≈ 4.85, t ≈ 5.52. This results in the bound

β( 3
2 ) < 3.11554.

Iteratively combining the improvements from Corollaries 10 and 11, we get β( 3
2 ) < 3.11549.



Appendix A

Proof of bounds connected to

Selberg’s model problem

A.1 Saddle point method

For any v ≥ d+ 1, we defined the polynomial fv by

fv(n) =
d!

vd+1

∑
r

`r

(
n

r

)
,

where

`r = (−1)r
d+1−r∑
k=0

d+ 1− r − k
k!

vk,

as in Selberg’s construction.

Theorem 43. If n, q, d ≥ 1 with 4(n+ q)2 ≤ d, and if v = d+ q, then we have

v(n+2)/2fv(n+ 2) =
n!en/2√
πn(n+1)/2

<
(
i−n exp

(
i(n3 + q)

√
n
v +O( n+q√

nv
)
))

e
q2

4v .

Proof. We compute fv(n+ 2) by the following formula from Proposition 18:

vn+1fv(n+ 2) =
n!

2πi

∫
C

evz(1− z)dz−n dz

z
,

where the contour is taken to be a circle of radius
√

n
v centered at the origin. Since the logarithmic

derivative of the integrand is v − d
1−z −

n
z , the integrand has saddle points at z0, z̄0, where z0 is the

root of vz2
0 − (n+ q)z0 + n = 0 having positive imaginary part.

134
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Writing z =
√

n
v e
iθ, z0 =

√
n
v e
iθ0 , we have

v(n+2)/2fv(n+ 2) =
n!

2πnn/2

∫ 2π

0

evz−inθ(1− z)ddθ.

To see that we may restrict the integral to a small interval around θ0 and 2π − θ0, we consider the

real part of the logarithm of the integrand as a function of cos(θ):

log |evz−inθ(1− z)d| =
√
nv cos(θ) + d log

∣∣∣1−√n
v e
iθ
∣∣∣ =
√
nv cos(θ) +

d

2
log
(

1 +
n

v
− 2
√

n
v cos(θ)

)
.

Taking the second derivative with respect to cos(θ), we obtain

d2

(d cos(θ))2
log |evz−inθ(1− z)d| = − 2dn

v
(

1 + n
v − 2

√
n
v cos(θ)

)2 ≤ −
2dnv

(
√
v +
√
n)4

,

so

|evz(1− z)d| ≤ |evz0(1− z0)d|e−
dv

(
√
v+
√
n)4

n(cos(θ)−cos(θ0))2

,

and we see that we may restrict our attention to θ with | cos(θ)− cos(θ0)| � log(n)√
n

. Since cos(θ0) =
n+q

2
√
nv
≤ 1

4 , this is equivalent to restricting to the ranges |θ−θ0| � log(n)√
n

and |θ− (2π−θ0)| � log(n)√
n

.

Around θ0, the integrand can be written as

evz0−inθ0(1− z0)d exp
(
α(θ − θ0)2 + β(θ − θ0)3 +O(n(θ − θ0)4)

)
,

with

α = −vz0

2
+

dz0

2(1− z0)
+

dz2
0

2(1− z0)2
= −n+

(q − n)(vz0 − n)

2d
= −n+O

(
(n+ q)

√
n
v

)
,

β = − ivz0

6
+

idz0

6(1− z0)
+

idz2
0

2(1− z0)2
+

idz3
0

3(1− z0)3
= −2in

3
+O

(
(n+ q)

√
n
v

)
.

Thus we have

exp
(
α(θ − θ0)2 + β(θ − θ0)3 +O(n(θ − θ0)4)

)
= eα(θ−θ0)2

(1+β(θ−θ0)3+O(n(θ−θ0)4+n2(θ−θ0)6)),

and after integrating we get∫ 2π

0

evz−inθ(1− z)ddθ = 2<
(
evz0−inθ0(1− z0)d

√
π√
n

(1 +O( n+q√
nv

))
)
.
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By the defining equation for z0 we have v
nz

2
0 = −1 + n+q

n z0, so

e−inθ0 = i−n
(

1− n+ q

n
z0

)−n/2
= i−n exp

(
n+ q

2
z0 −

(n+ q)2

4v
+O( n+q√

nv
)

)
.

Also, we have

evz0(1− z0)d = exp

(
n

2
+

(
n

3
+ q − n+ q

2

)
z0 +

n(n− 2q)

12v
+O( n+q√

nv
)

)
,

so, using z0 = i
√

n
v + n+q

2v +O( (n+q)2

v2 ), we have

v(n+2)/2fv(n+ 2) =
n!√

πn(n+1)/2
<
(
i−n exp

(
n
2 + i(n3 + q)

√
n
v + q2

4v +O( n+q√
nv

)
))

.

A.2 Log-concavity method

We’ll repeat the definitions and a few of the results from Section 4.2, focusing on the case v = d+ 1.

We define the polynomial f of degree d by

f(n) =
∑
i≤d

`i

(
n

i

)
,

where

`r = (−1)r
d!

(d+ 1)d+1

d+1−r∑
i=0

d+ 1− r − i
i!

(d+ 1)i,

and we wish to describe the behavior of the roots ν1, ..., νd of f(n) =
∑
i `i
(
n
i

)
as d gets large.

Proposition 49 (Proposition 15). The roots ν1, ..., νd of f are all real, positive, and greater than

2. For any integer n, the closed interval [n, n+ 1] contains at most one root νi.

Corollary 12 (Corollary 4). If n is an integer with f(n)f(n + 2) < 0, then the interval (n, n + 2)

contains exactly one root νi, and whether νi is above or below n + 1 is determined by the sign of

f(n+ 1).

From here on we assume that ν1 < · · · < νd.

Remark 6. Numerical calculations indicate that we even have νi+1 > νi + 2 for every i.

Proposition 50 (Proposition 16). Let n be a nonnegative integer. Then

f(n+ 2) =
∑
k

(−1)k

(d+ 1)k+1
k!

(
d

k

)(
n

k

)
.

Furthermore, we have f(0) = (d+1)d+1

d! .



A.2. LOG-CONCAVITY METHOD 137

Proposition 51 (Proposition 17). Let a(n, k) be the number of permutations of an n-set having

exactly k cycles of size greater than 1. Then for n a nonnegative integer we have

f(n+ 2) =
1

(d+ 1)n+1

∑
k

(−1)ka(n, k)dk.

In particular, f(n+ 2) is positive for large d if and only if bn2 c is even.

More generally, define aq(n, k) by

aq(n, k) =
∑
l

(
n

l

)
c2(n− l, k)ql,

where c2(m, k), an associated signless Stirling number of the first kind, is defined to be the number

of derangements of an m-set having exactly k cycles of size greater than 1 (so that a(n, k) = a1(n, k)

and c2(n, k) = a0(n, k)). Then we have

∑
j

(−1)j(d+ q)n−jj!

(
d

j

)(
n

j

)
=

n!

2πi

∫
C

e(d+q)z(1− z)d dz

zn+1
=
∑
k

(−1)kaq(n, k)dk,

where C is any contour winding counterclockwise around 0.

Corollary 13. If k is fixed then νk approaches 2k + 1 from above as d goes to ∞.

Proof. By the previous proposition, for any m ≥ 1 we can find d0 sufficiently large that for any

d ≥ d0 we have νj ∈ (2j + 1, 2j + 2) for 1 ≤ j ≤ k +m2. For any d ≥ d0, we then have

∏
j 6=k

∣∣∣∣νj − (2k + 1)

νj − (2k + 2)

∣∣∣∣ ≥ ∏
1≤j<k

2j − 1

2j

∏
1≤j≤m

2j + 1

2j
�k

√
m.

By the previous proposition, we have

∏
j

∣∣∣∣νj − (2k + 1)

νj − (2k + 2)

∣∣∣∣ =
|f(2k + 1)|
|f(2k + 2)|

→ a(2k − 1, k − 1)

a(2k, k)

as d→∞, so we must have
∣∣∣νk−(2k+1)
νk−(2k+2)

∣∣∣�k
1√
m

for d sufficiently large. Taking m to infinity, we see

that limd→∞ νk = 2k + 1.

Proposition 52. The coefficients a(n, k) are log-concave in k, that is,

a(n, k)2 ≥ a(n, k − 1)a(n, k + 1).

More generally, for any q ≥ 0 the coefficients aq(n, k) are log-concave in k.

Proof. This will be an application of Theorem 2.5.2 of Francesco Brenti’s memoir on log concavity
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[1] (since the proof is short, we’ll reproduce it here). We will show more generally that if qi is a

finite nonnegative log-concave sequence without internal zeros, then the expression

ck =
∑
m≥0

k!

m!
c2(m, k)qm

is log-concave in k. Plugging in qm = m!
(
n
m

)
qn−m gives (a stronger form of) the Proposition.

We start with the easy observation that for any i, j we have(
i+ j

i

)
c2(m, i+ j) =

∑
x+y=m

(
m

x

)
c2(x, i)c2(y, j).

Thus, if we define the matrix L by Lk,m = k!
m!c2(m, k), then L has the “semigroup property” of

Francesco Brenti [1], that is, the i + jth row of the matrix L is the convolution of the ith row and

the jth row for any i, j.

The second ingredient we need is that every two by two minor of L is nonnegative. Since every

entry of L is nonnegative, with Lk,n = 0 exactly when 2k > n, this will follow from the inequality

c2(n, k)c2(n+ 1, k + 1) ≥ c2(n, k + 1)c2(n+ 1, k). (A.1)

Applying the recurrence

c2(m, l) = (m− 1)(c2(m− 1, l) + c2(m− 2, l − 1))

with (m, l) = (n+ 1, k + 1), (n+ 1, k), (n, k), and (n− 1, k − 1), we see that (A.1) is equivalent to

(n−1)(c2(n−1, k)+c2(n−2, k−1))c2(n−1, k) ≥ (n−2)c2(n, k+1)(c2(n−2, k−1)+c2(n−3, k−2)),

which follows from the log-concavity of c2(m+ l, l) in l for m = n− k − 1 fixed. The log-concavity

of c2(m + l, l) in l is well-known and can be proved by an easy induction on m using the above

recurrence (in fact, by Theorem 6.7.2 of [1] c2(m+ l, l) is even a Pólya frequency sequence in l).

Now we can apply the proof of Theorem 2.5.2 of [1]. Let Q be the matrix defined by Qi,j = qi+j ,

then if qi is log-concave every two by two minor of Q will be nonpositive. By the Cauchy-Binet

identity, we see that every two by two minor of

C = LQLt
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is nonpositive as well. We have

Ci,j =
∑
x,y

Li,xQx,yLj,y

=
∑
m

( ∑
x+y=m

Li,xLj,y

)
qm

=
∑
m

Li+j,mqm

= ci+j ,

so the nonpositivity of the two by two minors of C implies the log-concavity of ck, and we are

done.

Corollary 14. If νk ≥ 2k + 2, then

4k3 + 9k2 − 4k ≥ 9d.

Furthermore, for any fixed j, if kj is the first integer k such that νk ≥ 2k + 1 + j then as d goes to

infinity we have

lim
d→∞

(2kj)
3

d
=

(
3πj

2

)2

.

Proof. By the previous propositions, for the first claim it’s enough to show that for 4k3+9k2−4k < 9d

we have a(2k, k)d > a(2k, k − 1). We have

a(2k, k) = (2k − 1)(2k − 3) · · · 1 = (2k − 1)!!,

and

a(2k, k−1) =

(
2k

2

)
(2k−3)!!+2 ·2k

(
2k − 1

3

)
(2k−5)!!+

22

2!

(
2k

6

)(
6

3

)
(2k−7)!!+6 ·

(
2k

4

)
(2k−5)!!,

so
a(2k, k − 1)

a(2k, k)
= k +

4k(k − 1)

3
+

4k(k − 1)(k − 2)

9
+ k(k − 1) =

4k3 + 9k2 − 4k

9
.

For the second claim, we will apply Corollary 4 by showing that for every k � 3
√
d, we have at

least one of f(k − 1)f(k + 1) < 0 or f(k)f(k + 2) < 0, depending on whether k is even or odd and

on the size of
√

(2k)3

9d modulo 2π. More precisely, we will show that for L ≥ k3

d , we have

(−1)k
(d+ 1)2k+1

dka(2k, k)
f(2k + 2) =

∑
l

(−1)l

dl
a(2k, k − l)
a(2k, k)

= cos
(√

(2k)3

9d

)
+OL( 1

k ) +O( 1
L! )
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and

(−1)k
(d+ 1)2k+2

dka(2k + 1, k)
f(2k+ 3) =

∑
l

(−1)l

dl
a(2k + 1, k − l)
a(2k + 1, k)

=
√

9d
(2k)3 sin

(√
(2k)3

9d

)
+OL( 1

k ) +O( 1
L! ).

In order to determine the size of a(2k, k), we note that for any fixed l and k large, the largest

contribution of permutations on 2k symbols with k−l nontrivial cycles comes from the permutations

with as few 2-cycles as possible, so we have

a(2k, k − l)
a(2k, k)

=
22l

(2l)!

(
2k

6l

)(
6l

3, ..., 3

)
(2k − 6l − 1)!!

(2k − 1)!!
+Ol(k

3l−1) =
(2k)3l

(2l)!32l
+Ol(k

3l−1).

Using the log-concavity of the a(n, k)s, we see that if we take L even and large enough that a(2k, k−
L)/dL > a(2k, k − (L+ 1))/dL+1, then we have

∑
l≤L+1

(−1)l

(2l)!

( (2k)3

9d

)l
+OL

(k3L+2

dL+1

)
≤
∑
l

(−1)l

dl
a(2k, k − l)
a(2k, k)

≤
∑
l≤L

(−1)l

(2l)!

( (2k)3

9d

)l
+OL

(k3L−1

dL

)
.

Taking L ≥ (2k)3

9d , we get

∑
l

(−1)l

dl
a(2k, k − l)
a(2k, k)

= cos
(√

(2k)3

9d

)
+OL( 1

k ) +O( 1
L! ).

Similarly, for large k we have

a(2k + 1, k − l)
a(2k + 1, k)

=
(2k)3l

(2l + 1)!32l
+Ol(k

3l−1),

which gives

∑
l

(−1)l

dl
a(2k + 1, k − l)
a(2k + 1, k)

=
√

9d
(2k)3 sin

(√
(2k)3

9d

)
+OL( 1

k ) +O( 1
L! ).

Taking L sufficiently large, we see that for k3 ≤ Ld (and k, d large) the sign of f(k)f(k + 2) is

negative unless either k is even and

√
(2k)3

9d is close to a multiple of π, or k is odd and

√
(2k)3

9d is

close to an odd multiple of π
2 . Using Corollary 4, we see that

lim
d→∞

(2k2j−1)3

9d
=
(
πj − π

2

)2

and

lim
d→∞

(2k2j)
3

9d
= (πj)

2
.
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Remark 7. Numerical calculations support the approximation

νk ≈ 2k + 1 +
2

3π

√
ν3
k

d

when k is small compared to d. When d = 1000 and k ≤ 100, the absolute error is less than 0.05.

On the other hand, we seem to have νd ≈ 4d, so the approximation breaks down for large k.

Proposition 53. Let

θ(n) = (1− n)f(n)2.

For (2k + 2)3 ≤ 18αd, α ≤ 1, we have

|θ(2k + 2)|
(2k + 2)!

(d+ 1)2k+2 ≥ (1− α)2 d2k

(d+ 1)2k

1

2

Ck
4k
,

where Ck = 1
k+1

(
2k
k

)
is the kth Catalan number, and

|θ(2k + 1)|
(2k + 1)!

(d+ 1)2k+1 ≥
(

1− α

3

)2 d2k−2

(d+ 1)2k−2

2k(k + 1)(2k + 1)

9(d+ 1)

Ck
4k
.

Proof. By the log-concavity of the a(n, k)s, since 4k3 + 9k2 − 4k ≤ 1
2 (2k + 2)3 ≤ 9αd we have

|f(2k + 2)| ≥ dk

(d+ 1)2k+1

(
a(2k, k)− 1

d
a(2k, k − 1)

)
≥ (1− α)

(2k − 1)!!dk

(d+ 1)2k+1
,

so

|θ(2k + 2)|
(2k + 2)!

(d+ 1)2k+2 ≥ (1− α)2 d2k

(d+ 1)2k

(2k + 1)((2k − 1)!!)2

(2k + 2)!
= (1− α)2 d2k

(d+ 1)2k

1

2

Ck
4k
.

Similarly, using the formulas

a(2k − 1, k − 1) = (2k − 1)!! + 2!

(
2k − 1

3

)
(2k − 5)!! =

(2k + 1)!!

3
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and

a(2k − 1, k − 2) =

(
2k − 1

3

)
(2k − 5)!! + 2!

(
2k − 1

3

)(
2k − 4

2

)
(2k − 7)!!

+ 3!

(
2k − 1

4

)
(2k − 5)!! + 4!

(
2k − 1

5

)
(2k − 7)!!

+
2!2

2!

(
2k − 1

6

)(
6

3

)
(2k − 7)!! + 2!3!

(
2k − 1

3

)(
2k − 4

4

)
(2k − 9)!!

+
2!3

3!

(
2k − 1

9

)(
9

3, 3, 3

)
(2k − 11)!!

=
(k − 1)(20k2 + 35k − 123)

405
(2k + 1)!!,

we see that since (k − 1)(20k2 + 35k − 123) ≤ 5
2 (2k + 2)3 ≤ 135α3 d, we have

|f(2k + 1)| ≥ dk−1

(d+ 1)2k

(
a(2k − 1, k − 1)− 1

d
a(2k − 1, k − 2)

)
≥
(

1− α

3

) (2k + 1)!!dk−1

3(d+ 1)2k
,

so

|θ(2k + 1)|
(2k + 1)!

(d+ 1)2k+1 ≥
(

1− α

3

)2 d2k−2

(d+ 1)2k−2

2k((2k + 1)!!)2

9(d+ 1)(2k + 1)!

=
(

1− α

3

)2 d2k−2

(d+ 1)2k−2

2k(k + 1)(2k + 1)

9(d+ 1)

Ck
4k
.

We can now give our first improvement on Selberg’s lower bound sieve, at v = d+ 1.

Theorem 44. For every d ≥ 4 there is a polynomial θd of degree 2d+ 1 with θd(0) = 1, θd(n) ≤ 0

for n ∈ N+, and ∑
n

θd(n)

n!
(d+ 1)n � 1

6
√
d
.

Proof. It’s easy to see that for any root νk of g, we can find a quadratic polynomial qk such that

qk(0) = 1,

0 ≤ qk(n) ≤
(

1− n

νk

)2

for n ∈ N, and at least one of qk(bνkc), qk(dνke) is 0: for instance, we can take

qk(n) =

(
1− n

νk

)2

−min

(
1

bνkc

(
1− bνkc

νk

)2

,
1

dνke

(
1− dνke

νk

)2
)
n.

We define θd by

θd(n) = (1− n)
∏
k

qk(n).
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If we set θ(n) = (1− n)f(n)2, then we have

∑
n

θd(n)

n!
(d+ 1)n ≥

∑
n

θ(n)

n!
(d+ 1)n +

∑
k

min

(
|θ(bνkc)|
bνkc!

(d+ 1)bνkc,
|θ(dνke)|
dνke!

(d+ 1)dνke
)
.

Since
∑
n
θ(n)
n! (d+ 1)n = 0 and 2k+ 1 ≤ νk ≤ 2k+ 2 for (2k+ 2)3 ≤ 18d, we can apply the previous

Proposition to see that

∑
n

θd(n)

n!
(d+1)n ≥

∑
(2k+2)3≤18d

(
1− (2k + 2)3

18d

)2
d2k

(d+ 1)2k
min

(
1

2
,

2k(k + 1)(2k + 1)

9(d+ 1)

)
Ck
4k
� 1

6
√
d
.

We come at last to trying to prove a lower bound on vR. For any v ≥ d + 1, we define the

polynomial fv by

fv(n) =
d!

vd+1

∑
r

`r

(
n

r

)
,

where

`r = (−1)r
d+1−r∑
k=0

d+ 1− r − k
k!

vk,

as in Selberg’s construction.

Proposition 54. For q = v − d�
√
d, we have

fv(0) = 1− q − 1

v

d!

vd

∑
r

vr

r!
= 1− q − 1

v
Γ(d+ 1, v)v−dev � 1

as well as

∑
n

(1− n)fv(n)2

n!
vn = −ev d!

vd+1
(q − 1)fv(0) = −(

√
2π + o(1))e

q2

2d
q − 1√
d
fv(0).

Furthermore, for every nonnegative integer n we have

d

dv

(
vn+1fv(n+ 2)

)
= nvnfv(n+ 1)

and

fv(n+ 2) =
1

vn+1

∑
k

(−1)kaq(n, k)dk.

Proof. The first two claims are easy calculations. For the last two claims, we use an analogous

argument to the proof of Proposition 16 to see that

fv(n+ 2) =
1

vn+1

∑
j

(−1)jvn−jj!

(
d

j

)(
n

j

)
.
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Multiplying by vn+1 and differentiating each term of the sum with respect to v we get the claim

about the derivative of vn+1fv(n+ 2). The last claim follows from Proposition 17.

Lemma 1. For 0 ≤ k = v − d− 1 ≤
3√
d

3 and 1 ≤ j ≤ 3
√
d− 1 we have

dj−1

(
2j + 1

3
+ k

)
(2j − 1)!! ≥ (−1)j−1v2jfv(2j + 1) ≥

(
1− 4

27

)
dj−1 (2j + 1)!!

3

and

dj(2j − 1)!! ≥ (−1)jv2j+1fv(2j + 2) ≥ dj−1

(
5d

9
− 2kj(2j + 1)

3
− k2j

)
(2j − 1)!! ≥ 0.

Proof. We prove these inequalities by induction on j. For the base case we use the identity vfv(2) =

1. By the previous Proposition, we have

v2jfv(2j + 1) = (d+ 1)2jg(2j + 1) + (2j − 1)

∫ v

u=d+1

u2j−1fu(2j)du.

By the induction hypothesis, we have (−1)j−1fu(2j) ≥ 0 and (−1)j−1u2j−1fu(2j) ≤ dj−1(2j − 3)!!,

so the claim follows from the bounds established on g(2j + 1) in Proposition 53. The second bound

is proved the same way, except this time (−1)jv2j+1fv(2j + 2) is decreasing in v.

Theorem 45. If R = 2d+ 1 and d ≥ 8 then vR − (d+ 1)� 3
√
d.

Proof. By the same argument as the one used in the proof of Theorem 44, for any v ≤ d+ 1 +
3√
d

3

we can find a polynomial θv of degree 2d+ 1 with θv(0) = fv(0)2,

0 ≥ θv(n) ≥ (1− n)fv(n)2

for n ∈ N+, and such that for any 1 ≤ j ≤ 3
√
d − 1 at least one of θv(2j + 1), θv(2j + 2) vanishes.

Setting k = v − d− 1, we see that

∑
n

θv(n)

n!
vn ≥

∑
n

(1− n)fv(n)2

n!
vn+

∑
1≤j≤ 3√

d−1

min

(
2jfv(2j + 1)2

(2j + 1)!
v2j+1,

(2j + 1)fv(2j + 2)2

(2j + 2)!
v2j+2

)
.

By the previous Lemma and Proposition, this is at least

−ev d!

vd+1
k +

∑
1≤j≤ 3√

d−1

min

((
1− 4

27

)2
2j(j + 1)(2j + 1)d2j−2

9v2j−1
,

1

2

(
5d

9
− 2kj(2j + 1)

3
− k2j

)2
d2j−2

v2j

)
Cj
4j
.
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The sum in the above is easily seen to be � 1
6√
d
, and ev d!

vd+1 k � k√
d
, so for k � 3

√
d the above is

positive.

The implied constant in the previous Theorem is very small. In order to get a better constant,

we have to get more accurate bounds for fv, and further we need the bounds to be valid in a larger

range for j, k. One can argue similarly to Corollary 14 to show that if j, k, d→∞ with j3, k3 � d,

and v = d+ k + 1, then we have

(−1)j−1v2jfv(2j + 1) ≈ dj−1
√

d
2j sin

((
2j
3 + k

)√
2j
d

)
(2j − 1)!!

and

(−1)jv2j+1fv(2j + 2) ≈ dj cos

((
2j
3 + k

)√
2j
d

)
(2j − 1)!!.



Appendix B

Solution to system of functional

inequalities

In this appendix, we will state and prove the full form of Theorem 41. In order to state it correctly,

we need to first define the topological space on which the associated measure is constructed.

B.1 Decorated reals and the decorated triangle

In order to choose how to break ties in inequalities, we will “decorate” real numbers with exponents

from {+,−}, so that x+ should be thought of as a number infinitesimally greater than x while x−

should be thought of as a number infinitesimally smaller than x.

Definition 19. A decorated real is an element (x,±) of R× {+,−}. We write x± as shorthand for

(x,±), and we call the choice of sign ± the decoration of x±. We write R± for the set of decorated

real numbers. We define an ordering on R± by a∓ < b± if either a < b or a = b and ∓ < ±. We

define the decorated interval I± to be I± = [0−, 1+]. We define the topology on R± to be the open

interval topology.

Now we collect a few basic facts about this topological space.

Proposition 55. R± is a totally disconnected Hausdorff space, and the sets [a+, b−] with a < b

form a base of open sets for R±. If I± = [0−, 1+] with the induced topology, then I± is compact,

and every clopen set of I± is a finite union of basic open sets of R± and possibly endpoints 0−, 1+

of I±.

Any nondecreasing function f : [0, 1]→ [0, 1] can be associated to a probability measure on I±,

such that the measure of the set [0−, a−] is f(a). The main result of this section can be viewed as

a sort of 2-dimensional generalization of this fact.

146
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Definition 20. The decorated triangle ∆± is the set of (x±, y±, z±) ∈ (I±)3 such that x+y+z = 2

and such that the three decorations are not all equal. A polygon contained in ∆± is called aligned

if every edge is perpendicular to one of the x, y, or z axes, and if it is clopen. An aligned polygon is

called an xy-rectangle if it is convex and every edge is perpendicular to either the x-axis or to the

y-axis.

Proposition 56. ∆± is a closed subset of (I±)3, and is therefore compact. The clopen subsets

of ∆± are exactly the finite unions of aligned polygons and possibly clopen subsets of the edges

{x± = 1+}, {y± = 1+}, {z± = 1+} of ∆±. If an aligned polygon P of ∆± is written as a disjoint

union of an arbitrary set of aligned polygons, then the union must actually be a finite dissection of

P .

We will eventually construct a measure on ∆± by first defining it on xy-rectangles and aligned

triangles. To that end, we need the following result.

Theorem 46. If µ is a function taking xy-rectangles and aligned triangles to [0, 1], then it can be

extended to a measure on the σ-algebra generated by the aligned polygons if and only if it satisfies

the following three dissection conditions.

a) If an xy-rectangle S can be dissected into two aligned triangles T1, T2, then µ(S) = µ(T1)+µ(T2)

(note that in this case, S must be “square”).

b) If an xy-rectangle R is dissected into two smaller xy-rectangles R1, R2 (by cutting it in either

the x direction or the y direction), then µ(R) = µ(R1) + µ(R2).

c) If an aligned triangle T is dissected into an xy-rectangle R and two smaller aligned triangles

T1, T2, then µ(T ) = µ(R) + µ(T1) + µ(T2).

Proof. First we describe how to extend µ to arbitrary aligned polygons. Let P be an aligned polygon.

We say that a finite set of line segments L contained in P is good if it satisfies the following conditions:

• every edge of P is in L,

• every element of L has its endpoints on the boundary of P ,

• every element of L which is not a boundary segment of P is perpendicular to either the x-axis

or the y-axis,

• at any point p where two elements of L meet, there is a segment from L passing through p

which are perpendicular to the x-axis and a segment from L through p perpendicular to the

y-axis.

First we show that a finite good set of lines L exists. Only the last condition on the set L poses

any trouble, but we can satisfy it by adding sequences of lines that “bounce” off the edges of P
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perpendicular to the z-axis finitely many times. It’s easy to see that the segments in a good set L

dissect P into finitely many rectangles and triangles, and we define µ(P ) to be the sum of µ applied

to all these rectangles and triangles. To see that this is well-defined, let L and L′ be two good

collections of lines, and note that L ∪ L′ is also a good collection of lines, and that L ∪ L′ may be

obtained from either L or L′ by a sequence of dissections as in conditions b) and c) of the theorem

statement.

To see that µ is finitely additive on clopen sets, it’s enough to check that if P is an aligned polygon

and l is any line segment dividing P into two aligned polygons P1, P2, then µ(P ) = µ(P1) + µ(P2).

If l is perpendicular to either the x-axis or the y-axis, this follows from the fact that µ(P ) is well-

defined. Otherwise, we can cover l with small xy-squares and apply condition a) to get rid of it,

then extend all the edges of these xy-squares to the boundary of P and finish using the fact that

µ(P ) is well-defined.

To see that µ is countably additive on clopen sets, we just note that by compactness, if any

countable disjoint union of clopen sets is clopen, then it must in fact be a finite union. Thus we may

apply Carathéodory’s extension theorem to finish the proof.

B.2 Going from functions to measures

Theorem 47 (Theorem 41). Suppose f : [0, 1] → R≥0 and g : [0, 1]2 → R≥0 are nonnegative

functions such that, for some ε > 0, we have

x+ y ≤ 1 =⇒ g(x, y) = 0,

|x+ y + z − 2| < ε =⇒ f(x) + f(y) + f(z) ≤ g(x, y) + g(x, z) + g(y, z) + 1,

and

x+ y + z = 2 =⇒ f(x) + f(y) + f(z) = g(x, y) + g(x, z) + g(y, z) + 1.

Then we have

a) f is nondecreasing,

b) for every integer n ≥ 1
ε ,

f( 1
n ) + · · ·+ f(n−1

n )

n− 1
≤ 1

3
≤
f( 0

n ) + · · ·+ f(nn )

n+ 1
,

c) f is integrable and
∫ 1

0
f(x)dx = 1

3 ,
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d) g is nondecreasing in either argument, and moreover satisfies the inequality

x1 ≤ x2, y1 ≤ y2 =⇒ g(x2, y2)− g(x1, y2) ≥ g(x2, y1)− g(x1, y1),

e) there is a symmetric probability distribution µ on the σ-algebra generated by the clopen subsets

of ∆±, such that for all x, y ∈ R we have

f(x) = Pµ(a,b,c)[a < x], g(x, y) = Pµ(a,b,c)[a < x ∧ b < y].

Proof. Part a): suppose 0 ≤ a < b ≤ 1 with b − a < ε, we will show that f(a) ≤ f(b). Choose a

nonnegative integer k such that

2a− b < k(b− a) < b.

For each 0 ≤ i ≤ k, set

x2i = 1− b+ (k − 2i)(b− a)

2
, x2i+1 = 1− b+ (2i− k)(b− a)

2
.

Note that by the choice of k we have a+x0 = a+x2k+1 < 1 and 1−b < xi < 1 for all 0 ≤ i ≤ 2k+1.

Furthermore, for each i we have b+x2i+x2i+1 = 2 and a+x2i−1 +x2i = 2. Thus, for each 0 ≤ i ≤ k
we have

f(b) + f(x2i) + f(x2i+1) = g(b, x2i) + g(b, x2i+1) + g(x2i, x2i+1) + 1,

f(a) + f(x2i) + f(x2i+1) ≤ g(a, x2i) + g(a, x2i+1) + g(x2i, x2i+1) + 1,

and for each 1 ≤ i ≤ k we have

f(b) + f(x2i−1) + f(x2i) ≤ g(b, x2i−1) + g(b, x2i) + g(x2i−1, x2i) + 1,

f(a) + f(x2i−1) + f(x2i) = g(a, x2i−1) + g(a, x2i) + g(x2i−1, x2i) + 1.

Adding together the inequalities and subtracting the equalities, we get

f(a) ≤ f(b) + g(a, x0) + g(a, x2k+1)− g(b, x0)− g(b, x2k+1)

= f(b)− g(b, x0)− g(b, x2k+1) ≤ f(b).

Part b): first we prove the left hand inequality. For every ordered triple of integers 0 < i, j, k < n

satisfying i+ j + k = 2n, we have an equality

f( in ) + f( jn ) + f( kn ) = g( in ,
j
n ) + g( in ,

k
n ) + g( jn ,

k
n ) + 1.
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Also, for every ordered triple 0 < i, j, k < n satisfying i+ j + k = 2n− 1, we have the inequality

f( in ) + f( jn ) + f( kn ) ≤ g( in ,
j
n ) + g( in ,

k
n ) + g( jn ,

k
n ) + 1.

Adding the inequalities and subtracting the equalities, and using g( in ,
j
n ) = 0 when i+ j = n, gives

the left hand inequality of b). For the right hand inequality of b) one uses equalities corresponding

to triples 0 ≤ i, j, k ≤ n with i+ j + k = 2n, and inequalities corresponding to triples 0 ≤ i, j, k ≤ n
with i+ j + k = 2n+ 1.

Part c) follows immediately from parts a) and b).

First we prove part d) in the case x2−x1 = y2−y1 < ε. If x2 +y1 = x1 +x2 < 1, it is immediate.

If x2 + y1 = x1 + y2 ≥ 1, then adding the inequalities and subtracting the equalities in

f(x2) + f(y1) + f(2− x2 − y1) = g(x2, y1) + g(x2, 2− x2 − y1) + g(y1, 2− x2 − y1) + 1,

f(x1) + f(y2) + f(2− x2 − y1) = g(x1, y2) + g(x1, 2− x2 − y1) + g(y2, 2− x2 − y1) + 1,

f(x1) + f(y1) + f(2− x2 − y1) ≤ g(x1, y1) + g(x1, 2− x2 − y1) + g(y1, 2− x2 − y1) + 1,

f(x2) + f(y2) + f(2− x2 − y1) ≤ g(x2, y2) + g(x2, 2− x2 − y1) + g(y2, 2− x2 − y1) + 1,

we get

g(x2, y2)− g(x1, y2) ≥ g(x2, y1)− g(x1, y1).

Note that the constraint on x1, x2, y1, y2 is that the four points (xi, yi) form a square of side length at

most ε. Since any rectangle whose sidelengths are rational multiples of each other can be dissected

into finitely many squares of arbitrarily small sidelength, we see that the inequality above holds

whenever x2 − x1 is a rational multiple of y2 − y1.

Next, we note that for any x1 < x2 and any y in [0, 1], there is some 0 ≤ y′ ≤ y such that

x1 + y′ < 1 and y − y′ is a rational multple of x2 − x1, since the rationals are dense in the reals.

Choosing such a y′, we get

g(x2, y)− g(x1, y) ≥ g(x2, y
′)− g(x1, y

′) = g(x2, y
′) ≥ 0.

Thus g is increasing in the first argument. Since our assumptions easily imply that g is symmetric

(swap y and z in the third assumption to see that g(y, z) = g(z, y) when y + z ≥ 1), g is also

increasing in the second argument.

To finish the proof of part d), assume for a contradiction that for some x1, x2, y1, y2 with x1 < x2

and y1 < y2 we have

g(x2, y2)− g(x1, y2) < g(x2, y1)− g(x1, y1).

Let α = g(x2, y2)− g(x1, y2), and let β = g(x2, y1)− g(x1, y1). We will show that for any u, v with
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y1 ≤ u < v ≤ y2, we have

g(x1, v) ≥ g(x1, u) + β − α.

Applying this repeatedly, we will see that g(x1, y2) ≥ g(x1, y1) + k(β − α) for all k ∈ N, giving us a

contradiction when we take k sufficiently large.

Start by picking u′ with u < u′ < v such that u′ − y1 is a rational multiple of x2 − x1, so that

we have

g(x2, u
′)− g(x1, u

′) ≥ g(x2, y1)− g(x1, y1) = β.

Next we pick v′ with u′ < v′ < v such that y2 − v′ is a rational multiple of x2 − x1, so that we have

α = g(x2, y2)− g(x1, y2) ≥ g(x2, v
′)− g(x1, v

′).

Combining these two inequalities with the fact that g is increasing in the second argument, we have

g(x1, v) ≥ g(x1, v
′)

≥ g(x2, v
′)− α

≥ g(x2, u
′)− α

≥ g(x1, u
′) + β − α.

In preparation for part e), we will need a variation on part d). If a < b and b− a < ε, then

f(a) + f(1− b) + f(1) ≤ g(a, 1) + g(1− b, 1) + 1,

f(b) + f(1− b) + f(1) = g(b, 1) + g(1− b, 1) + g(b, 1− b) + 1,

so

f(b)− f(a) ≥ g(b, 1)− g(a, 1) + g(b, 1− b).

Part e): we need to define µ and check that it is symmetric. By Proposition 56 and Theorem 46,

in order to define µ we just need to define µ on aligned triangles, xy-rectangles, and basic intervals

on the boundary of ∆± and check that our definition satisfies the compatibility conditions a), b), c)

of Theorem 46. We will define the triangle ∆a,b,c ⊂ ∆± to be the set of points (x±, y±, z±) ∈ ∆±

such that either all three of the inequalities x± < a, y± < b, z± < c hold or all three of them fail.
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Then we define µ by

µ(∆x,y,z) = g(x, y) + g(x, z) + g(y, z)− f(x)− f(y)− f(z) + 1,

µ
(
((x1, x2)× (y1, y2)× I±) ∩∆±

)
= g(x2, y2)− g(x1, y2)− g(x2, y1) + g(x1, y1),

µ
(
((x1, x2)× {1+} × I±) ∩∆±

)
= f(x2)− f(x1)− g(x2, 1) + g(x1, 1),

µ
(
((x1, x2)× (1− x2, 1− x1)× {1+}) ∩∆±

)
= g(x2, 1− x1)− g(x1, 1− x1)− g(x2, 1− x2)− µ(∆x2,1−x1,1),

µ({(1+, 1+, 0−)}) = 1− 2f(1) + g(1, 1) = f(0)− 2g(0, 1).

To check compatibility condition a) of Theorem 46, consider the square with sides at x-coordinates

x1, x2 and y-coordinates at y1, y2, such that x2 − x1 = y2 − y1, and define z by

z = 2− x2 − y1 = 2− x1 − y2.

Then we have

µ
(
((x1, x2)× (y1, y2)× I±) ∩∆±

)
= g(x2, y2)− g(x1, y2)− g(x2, y1) + g(x1, y1)

= µ(∆x2,y2,z)− µ(∆x1,y2,z)− µ(∆x2,y1,z) + µ(∆x1,y1,z)

= µ(∆x2,y2,z) + µ(∆x1,y1,z)

since µ(∆x1,y2,z) = µ(∆x2,y1,z) = 0 by the definition of z and our third assumption.

Compatibility condition b) of Theorem 46 follows directly from the way we defined µ on xy-

rectangles. For compatibility condition c), suppose that x1, x2, y1, y2, z have (x2 − x1)(y2 − y1) > 0

and x2 + y2 + z = 2, so that ∆x1,y1,z is dissected into ∆x1,y2,z,∆x2,y1,z, and the xy-rectangle with

sides at x-coordinates x1, x2 and y-coordinates y1, y2. Then

µ(∆x1,y1,z) = µ(∆x1,y1,z) + µ(∆x2,y2,z)

= µ(∆x1,y2,z) + µ(∆x1,y2,z) + µ
(
((x1, x2)× (y1, y2)× I±) ∩∆±

)
since µ(∆x2,y2,z) = 0 (by x2 + y2 + z = 0 and our third assumption).

By our second assumption, part d), and the inequality proved just after part d), µ takes non-

negative values on all sufficiently small aligned triangles, xy-rectangles, and clopen subsets of the

boundary of ∆±, and thus it takes nonnegative values on all clopen subsets of ∆±.

Finally, we check that µ is symmetric with respect to permuting the coordinates. Since µ is

determined by its values on aligned triangles and xy-rectangles (and subsets of the boundary of

∆±, which we leave to the reader), and since the definition of µ(∆x,y,z) is clearly invariant under

permuting x, y, z, we just need to check that the measure assigned to an xy-rectangle doesn’t change

when we swap the y and z coordinates. Consider the xy-rectangle with sides at x-coordinates x1, x2
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and y-coordinates y1, y2. After swapping the y and z coordinates, we can dissect the resulting aligned

parallelogram into ∆x1,2−x1−y2,y1 ,∆x2,2−x2−y1,y2 , and a signed copy of the xy-rectangle with sides

at x-coordinates x1, x2 and y-coordinates 2− x2 − y1, 2− x1 − y2. So we need to check the identity

g(x2, y2)−g(x1, y2)− g(x2, y1) + g(x1, y1) =

µ(∆x1,2−x1−y2,y1
) + µ(∆x2,2−x2−y1,y2

) + g(x2, 2− x1 − y2)

− g(x1, 2− x1 − y2)− g(x2, 2− x2 − y1) + g(x1, 2− x2 − y1).

After the dust settles, the difference of the two sides comes out to

µ(∆x1,y2,2−x1−y2
) + µ(∆x2,y1,2−x2−y1

) = 0,

and we are done.
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[17] H.-J. Kanold. Über primzahlen m arithmetischen folgen. Mathematische Annalen, 156:393–396,

1964.
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