
POISSON IMITATORS AND SIEVE THEORY

ZARATHUSTRA BRADY

Abstract. Sieve theory is actually a question about probability distributions whose low moments
agree with the low moments of Poisson distributions. In particular, we can derive Selberg’s “parity
problem” without using properties of the Möbius function or the Liouville function - instead, we
use the fact that the alternating group forms a subgroup of the symmetric group.

1. Poisson Imitators

At a high level, sieve theory tries to bound the chance that a random number n is prime by
showing that the näıve heuristic that each prime p <

√
n independently has a 1

p chance of being a

divisor of n is not too terribly wrong. If we disregard the very small primes (i.e., the primes less
than ln(n)), then any particular prime p is unlikely to divide n. If each random event p | n was
jointly independent of all other events q | n for other primes q, then the number of prime divisors
of n would be a sum of independent random variables in {0, 1}, each of which is very unlikely to be
1, so we would expect the number of prime divisors of n to behave like a Poisson distribution. In
reality, however, these events are only jointly independent in an approximate sense. While it is true
that the random events p | n and q | n are approximately independent if p, q <

√
n, if we instead

pick three primes p, q, r with p ∼ n1/2, q ∼ n1/3, r ∼ n1/4, then the random events p | n, q | n, r | n
are not jointly independent, since it is completely impossible for all three of p, q, r to divide n. The
goal of sieve theory is to quantify how much this failure of independence could matter.

This leads us to consider the following setup. We have a given number k, Poisson rates ν1, ..., νk ≥
0, and “widths” α1, ..., αk ∈ [0, 1]. We wish to study probability distributions on k-tuples of natural
numbers (X1, ..., Xk), such that the variable Xi approximately acts like a Poisson with rate νi, and
such that for i 6= j, the variables Xi and Xj are approximately independent. The role of the widths
αi is that for αi small, the approximations become more accurate - so the width αi describes how
much “wiggle room” the distribution of Xi has. We formalize this as follows.

Definition 1. We say that a k-tuple of random variables (X1, ..., Xk) ∈ Nk is a Poisson imitator
with parameters (ν1, α1), ..., (νk, αk) if the Xi satisfy the following moment constraints:

∀m ∈ Nk such that
∑
i

αimi ≤ 1, we have E
[(X1

m1

)
· · ·
(
Xk

mk

)]
=
νm1
1

m1!
· · ·

νmkk

mk!
.

In symbols, we will abbreviate this as X ∼ (ν, α).

To make the connection to Poisson distributions explicit, we point out the following description
of the moments of a Poisson distribution.

Proposition 1. A random variable X ∈ N is Poisson with rate ν (i.e., P[X = n] = e−ν ν
n

n! ) if and
only if X satisfies the moment conditions

∀m ∈ N, we have E
[(X
m

)]
=
νm

m!
.
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In particular, if X1, ..., Xk are independent Poissons with rates ν1, ..., νk, then (X1, ..., Xk) is a
Poisson imitator with parameters (ν1, 0), ..., (νk, 0).

The main question we have about Poisson imitators is what we can say about the probability
that (X1, ..., Xk) = (0, ..., 0). Note that in the special case where the Xi are independent Poissons
with rates νi, we have

P
[
(X1, ..., Xk) = (0, ..., 0)

]
= e−ν1−···−νk .

So we will always compare other Poisson imitators to this baseline.

Definition 2. For ν ∈ Rk≥0 and α ∈ [0, 1]k, we define the upper bound function F (ν, α) by

F (ν, α) := sup
X∼(ν,α)

e
∑
i νi · P[X = (0, ..., 0)].

Similarly, we define the lower bound function f(ν, α) by

f(ν, α) := inf
X∼(ν,α)

e
∑
i νi · P[X = (0, ..., 0)].

Note that we always have

0 ≤ f(ν, α) ≤ 1 ≤ F (ν, α) ≤ e
∑
i νi .

A nice family of Poisson imitators can be constructed by considering the distribution of cycle
sizes of a random permutation on the set [n] = {1, ..., n}.

Definition 3. Let σ be a permutation of [n]. Define Xσ
i to be the number of i-cycles which occur

in σ.

Proposition 2. If σ is a uniformly random permutation of [n], then the random variables Xσ
i

satisfy the moment conditions

∀m ∈ Nk such that
∑
i

imi ≤ n, we have E
[(Xσ

1

m1

)
· · ·
(
Xσ
k

mk

)]
=
∏
i

1

imimi!
,

together with the extra condition ∑
i

iXσ
i = n.

In particular, for any k ≤ n we see that (Xσ
1 , ..., X

σ
k ) is a Poisson imitator with parameters

(1, 1/n), ..., (1/k, k/n).

Corollary 1. For any n
2 ≤ k < n, we have

F
(
(1, 1/n), ..., (1/k, k/n)

)
≥ e1+···+1/k · 1

n
≥ f

(
(1, 1/n), ..., (1/k, k/n)

)
.

For n large, we can use the approximation 1 + · · ·+ 1/k ≈ ln(k) + γ to see that

e1+···+1/k · 1

n
≈ eγ · k

n
.

So we see that the constant eγ , which is so common throughout sieve-theoretic arguments, comes
up quite naturally in this framework. We also have another (pair of) families of Poisson imitators,
analogous to the parity problem from sieve theory.

Proposition 3. If σ is a uniformly random even permutation of [n], then the random variables
Xσ
i satisfy the moment conditions

∀m ∈ Nk such that
∑
i

imi ≤ n− 2, we have E
[(Xσ

1

m1

)
· · ·
(
Xσ
k

mk

)]
=
∏
i

1

imimi!
,
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together with the extra conditions ∑
i

iXσ
i = n,∑

i

(i− 1)Xσ
i ≡ 0 (mod 2).

In particular, for any k ≤ n we see that (Xσ
1 , ..., X

σ
k ) is a Poisson imitator with parameters (1, 1/(n−

2)), ..., (1/k, k/(n − 2)). A similar statement holds if σ is taken to be a uniformly random odd
permutation of [n].

Corollary 2. For any k < n, we have

F
(
(1, 1/(n− 2)), ..., (1/k, k/(n− 2))

)
≥ e1+···+1/k · 2

n
≈ 2eγ · k

n
,

and for n
2 ≤ k < n, we have

f
(
(1, 1/(n− 2)), ..., (1/k, k/(n− 2))

)
= 0.

From these examples, we can construct many other examples with a few simple constructions:

• we can drop any Xi from a tuple of Poisson imitators (and drop the corresponding pair
(νi, αi)),
• we can increase any width αi (without changing anything else),
• we can take independent copies of two Poisson imitators (X1, ..., Xk), (X

′
1, ..., X

′
l) and put

them together to make the tuple (X1, ..., Xk, X
′
1, ..., X

′
l) (concatenating the lists of νs and

αs),
• we can merge Xi and Xj within a tuple, replacing them with Xij = Xi + Xj , and define

the corresponding parameters to be νij = νi + νj , αij = max(αi, αj).

What we are really interested in are limiting problems, where the sizes of the tuples go to infinity
while the sum of νiαi remains bounded. We define limiting functions Fκ(s), fκ(s) as follows.

Definition 4. For κ : [0, 1] → R≥0 well-behaved and s > 1, we define parameters νn ∈ Rn−1≥0 ,

αn ∈ [0, 1]n−1 by

νni =

∫ i+1
ns

i
ns

κ(x)

x
dx

and

αni =
i+ 1

ns
.

We define Fκ(s) by

Fκ(s) = lim
n→∞

F
(
(νn1 , α

n
1 ), ..., (νnn−1, α

n
n−1)

)
,

and similarly define fκ(s) by

fκ(s) = lim
n→∞

f
(
(νn1 , α

n
1 ), ..., (νnn−1, α

n
n−1)

)
.

To motivate the definition of this limiting problem, it may be helpful to think of each pair (ν, α)
as describing a discrete measure µ on [0, 1] with finite support: the αis describe the support of µ,
while each νi describes the measure which µ assigns to the point αi (assuming that the αis are
distinct). The limiting problem we are interested in involves approximating a measure µ on [0, 1]
which satisfies ∫ 1

0
x dµ(x) <∞
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by a sequence of discrete measures of finite support. The function κ : [0, 1]→ R≥0 corresponds to
such a measure µ by the formula

κ(x) = x
dµ(x)

dx
,

and the parameter s > 1 is used to indicate that we wish to truncate the measure µ to the interval
[0, 1/s]. In order to check that the limiting problem defined above behaves sensibly, we need an
analogue of the Fundamental Lemma of sieve theory, which we will prove later in the paper.

In most cases we consider, the function κ will be a constant function. Taking the limit of our
permutation examples, we have the abstract parity problem.

Theorem 1 (Parity problem). For 1 < s < 2, we have f1(s) = 0, and for all s > 1, we have
F1(s) ≥ 2eγ

s .

2. Sieve weights

How do we actually compute the functions F (ν, α), f(ν, α)? Let’s focus on F (ν, α). The standard
technique for bounding a probability is to apply Markov’s inequality: we choose a function

θ : Nk → R≥0

such that

θ(0, ..., 0) = 1,

and apply the bound

P
[
X = (0, ..., 0)

]
≤ E[θ(X)].

In order to compute the right hand side, we choose θ to be a linear combination of the moments of
X which we have values for. Thus, we take θ of the form

θ(x) =
∑
m∈Nk

λm
∏
i

(
xi
mi

)
,

with the λms supported on m such that α ·m ≤ 1. In order to ensure that θ(0) = 1, we take λ0 = 1.

Definition 5. A pair of functions λ, θ : Nk → R is called a system of sieve weights if

θ(x) =
∑
m∈Nk

λm
∏
i

(
xi
mi

)
and

θ(0, ..., 0) = λ(0,...,0) = 1.

We say that (λ, θ) is compatible with the widths α if

λm 6= 0 =⇒ α ·m ≤ 1,

and we write such a system as (λ, θ)α.
We say that a system of sieve weights (λ, θ) forms an upper bound sieve, written (λ, θ) ≥ 0, if θ

satisfies

x ∈ Nk =⇒ θ(x) ≥ 0,

and we say that (λ, θ) forms a lower bound sieve, written (λ, θ) ≤ 0, if θ satisfies

x ∈ Nk \ {(0, ..., 0)} =⇒ θ(x) ≤ 0.
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If (λ, θ) forms an upper bound sieve which is compatible with α, then for any X ∼ (ν, α) we
have

P
[
X = (0, ..., 0)

]
≤ E[θ(X)] =

∑
m∈Nk

λm
∏
i

νmii

mi!
.

Alternatively, since the right hand side of the above comes out the same regardless of which Poisson
imitators we take for X, we can evaluate it in the case where the Xi are independent Poissons, to
get the formula ∑

m∈Nk
λm
∏
i

νmii

mi!
= e−

∑
i νi ·

∑
x∈Nk

θ(x)
∏
i

νxii
xi!

.

This formula is also easy to prove directly. As a consequence, we see that for an upper bound sieve
(λ, θ) which is compatible with α, we have

F (ν, α) ≤
∑
x∈Nk

θ(x)
∏
i

νxii
xi!

.

Is this approach the best we can do? In fact it is!

Theorem 2. For any rates ν ∈ Rk≥0 and widths α ∈ (0, 1]k, we have

F (ν, α) = min
(λ,θ)α≥0

∑
x∈Nk

θ(x)
∏
i

νxii
xi!

,

where the min is over upper bound sieves (λ, θ) which are compatible with α, and

f(ν, α) = max
(

0, max
(λ,θ)α≤0

∑
x∈Nk

θ(x)
∏
i

νxii
xi!

)
.

This is a special case of the following general result from the theory of convex optimization.

Theorem 3. Let S be a countable set, let s0 ∈ S, let M0, ...,Mk : S → R≥0 be any nonnegative
functions with M0 = 1, and let µ0, ..., µk ∈ R≥0. If X denotes the set of random variables X taking
values in S such that for each i we have

E[Mi(X)] = µi,

and if Y± denotes the set of tuples of weights (λ0, ..., λk) such that

x ∈ S =⇒ ±
∑
i

λiMi(x) ≥

{
±1 x = s0,

0 x 6= s0,

then as long as X contains a random variable X0 with full support S we have

sup
X∈X

P[X = s0] = min
λ∈Y+

∑
i

λiµi,

inf
X∈X

P[X = s0] = max
λ∈Y−

∑
i

λiµi.

Proof. We will only prove the formula for supX P[X = s0], as the other formula is proved similarly.
We may assume without loss of generality that M0, ...,Mk are linearly independent functions.

Let M ′0 : S → R be the function with M ′0(s0) = −1 and M ′0(x) = 0 for x 6= s0. For any x ∈ S,
we define M(x) by

M(x) =
(
M ′0(x),M1(x), ...,Mk(x)

)
∈ Rk+1.

Then for every C > supX P[X = s0] we must have

(−C, µ1, ..., µk) 6∈ Conv{M(x) | x ∈ S}.
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Thus there must be some separating hyperplane, that is, there is some nonzero vector v = (v0, ..., vk)
such that

v ·M(x) ≥ −v0C +
∑
i>0

viµi

for all x ∈ S and C > supX P[X = s0]. Since no linear combination of M1, ...,Mk is constant and
since there is some X0 ∈ X with full support, we must have v0 6= 0. Since we may take C arbitrarily
large, we must have v0 > 0. If we set λi = vi

v0
for i > 0, then we see that

M ′0(x) +
∑
i>0

λiMi(x) ≥ − sup
X∈X

P[X = s0] +
∑
i>0

λiµi,

so we can take λ0 = supX P[X = s0]−
∑

i>0 λiµi to complete the proof. �

Thus we can approximate F (ν, α) from above by finding an upper bound sieve (λ, θ)α, and we
can approximate it from below by finding a Poisson imitator X ∼ (ν, α). If we happen to find
an optimal upper bound sieve and an optimal Poisson imitator simultaneously, then the inequality
θ(m) ≥ 0 must have equality whenever P[X = m] is positive.

Proposition 4. An upper bound sieve (λ, θ)α ≥ 0 and a Poisson imitator X ∼ (ν, α) will satisfy

P
[
X = (0, ..., 0)

]
= e−

∑
i νiF (ν, α) =

∑
m∈Nk

λm
∏
i

νmii

mi!

if and only if they satisfy the complementary slackness condition

∀m ∈ Nk \ {(0, ..., 0)}, θ(m) · P[X = m] = 0.

Proof. We have ∑
m∈Nk

λm
∏
i

νmii

mi!
= E[θ(X)]

since X ∼ (ν, α), and

E[θ(X)]− P
[
X = (0, ..., 0)

]
=

∑
m∈Nk\{(0,...,0)}

θ(m) · P[X = m]. �

Let’s go back to the case νi = 1
i , αi = i

n−2 , where i runs from 1 to k. We can use a discretized

version of Selberg’s sieve to show that for n even and n−2
2 ≤ k < n, the upper bound parity problem

construction is best possible. We define an upper bound sieve by

θ(x) =
( ∑
m≤x

(−1)
∑
imi
(

1− 2
∑
i

i

n
mi

)
+

∏
i

(
xi
mi

))2
,

where (1− 2
∑

i
i
nmi)+ refers to the positive part of 1− 2

∑
i
i
nmi, i.e.

a+ :=

{
a a ≥ 0,

0 a ≤ 0.

That this sieve is compatible with α follows from the fact that the corresponding λs are given by

λm =
∑

a,b≤m≤a+b
(−1)

∑
i ai+bi

(
1− 2

∑
i

i

n
ai

)
+

(
1− 2

∑
i

i

n
bi

)
+

∏
i

(
mi

mi − ai,mi − bi, ai + bi −mi

)
,

and the only way for any summand to be nonzero is if we have
∑

i iai,
∑

i ibi ≤
n
2 − 1 (this is where

we use the assumption that n is even), so
∑

i imi ≤
∑

i i(ai + bi) ≤ n− 2.
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Since the upper bound parity problem Poisson imitator Xσ was supported on tuples with∑
i

iXσ
i = n,∑

i

Xσ
i ≡ 1 (mod 2),

we just have to check that θ(x) = 0 when (x1, ..., xk) can be extended to a sequence (x1, ..., xn) such
that

∑
i≤n ixi = n,

∑
i≤n xi is odd, and

∑
i≤k xi ≥ 1. A proof of this fact, in a slightly different

setting, can be found in Proposition 45 of [1]. We have proved the following result.

Theorem 4 (Selberg’s upper bound is optimal for κ = 1 and s < 2). For n even and n−2
2 ≤ k < n,

we have

F
(
(1, 1/(n− 2)), ..., (1/k, k/(n− 2))

)
= e1+···+1/k · 2

n
≈ 2eγ

k

n
.

Taking the limit as n→∞, we have

F1(s) =
2eγ

s
for 1 < s < 2.

3. Connection to sieve theory

First we will give a slightly informal description of how the Poisson imitator problem is relevant
to sieve theory. Suppose that we start with an interval [x, x+ y) ⊆ Z of length y, and then for each

prime p < z = y1/s we delete all numbers from this interval which lie in any of κp “bad” congruence
classes modulo p. We wish to know how many elements remain after this process.

Assuming that there is a well-behaved function κ : [0, 1]→ R≥0 such that∑
ya<p<yb

κp
p
≈
∫ b

a

κ(x)

x
dx,

then for any non-overlapping intervals [a1, b1], ..., [ak, bk] ⊆ (0, 1/s), if we pick a random number
n ∈ [x, x+y), then the expected number of ways to choose a set of m1 distinct primes p ∈ [ya1 , yb1 ],
another set of m2 distinct primes p ∈ [ya2 , yb2 ], ..., and a set of mk distinct primes p ∈ [yak , ybk ],
such that n is in one of the bad congruence classes for each of these primes is

≈
k∏
i=1

1

mi!

(∫ bi

ai

κ(x)

x
dx
)mi

+O
(∏

i y
bimi

y

)
by the Chinese Remainder Theorem.

Thus if we define random variables Xi to be the number of primes p ∈ [yai , ybi ] such that our
random n ∈ [x, x+ y) is in a bad congruence class for p, we see that the tuple (X1, ..., Xk) forms a

Poisson imitator with rates
∫ bi
ai

κ(x)
x dx and widths bi.

The general sifting setup is as follows. We assume we have a set A of size y, and for each prime
p < z = y1/s we have a “bad” set Ap ⊆ A of size roughly

κp
p · y, such that if we extend the notation

multiplicatively by

Ad =
⋂
p|d

Ap

and

κd =
∏
p|d

κp,
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then we have

|Ad| =
κd
d
· y +O(κd)

for every squarefree d with all prime factors bounded by z. Under these assumptions (and no
additional assumptions!), we wish to find the optimal upper and lower bounds for

S(A, z) :=
∣∣∣A \ ( ⋃

p<z

Ap

)∣∣∣.
Theorem 5 (Selberg [2]). In the above setup, if the function κ : [0, 1] → R≥0 is sufficiently well-
behaved, then the asymptotically best (as y → ∞, with s held fixed) upper and lower bounds for
S(A, z) are given by

fκ(s) + o(1) ≤ S(A, z)

y
∏
p<z(1−

κp
p )
≤ Fκ(s) + o(1).

Furthermore, there is an effective procedure which takes κ, s, and any ε > 0, and returns parameters
(ν, α) such that

|Fκ(s)− F (ν, α)|, |fκ(s)− f(ν, α)| < ε.

The proof of Selberg’s result is based on several clever ideas. We briefly summarize them below.

• The optimal bound for any particular y must be based on a system of sieve weights, by a
similar argument to Theorem 3.
• The Fundamental Lemma of sieve theory is sufficiently strong that we can handle the small

primes (i.e. less than yε) in a generic way, without losing much in the asymptotics.
• We can handle the very large primes (i.e. above z1−ε) by a union bound, without losing

much in the asymptotics.
• We can combine “good enough” sieves for the small and very large primes together with a

nearly sharp sieve for the medium primes, and get a nearly sharp sieve overall.
• We can bucket the medium and large primes into intervals [yai , ybi ], and show that if we

average over the buckets, the sieve weights λd must be bounded on average if the sieve
bound is any good, by showing that the average value of θ(d) =

∑
k|d λk must be bounded

and using Möbius inversion.
• We can take a subsequence y → ∞ such that the averaged sieve weights have limiting

values, by a compactness argument.
• We can take these limiting values of the averaged sieve weights, and apply them instead to

primes “one interval down”, to avoid issues with the discretization, without losing much in
the asymptotics. To make this step work out nicely, Selberg chooses the intervals such that

the integral
∫ κ(x)

x dx over each interval has the same size.

The interested reader can find the full statement and proof in Selberg’s “Lectures on Sieves” [2],
or (in the special case where κ is constant) in Chapter 6 of the author’s thesis [1].

4. Selberg’s upper bound sieve within this framework

Selberg’s upper bound sieve takes the form of a polynomial

θ(x) =
( ∑
α·m≤ 1

2

`m

(
x

m

))2
,

where we have adopted the muliplicative notation(
x

m

)
:=
∏
i

(
xi
mi

)
.
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In order to ensure that θ(0) = 1, we must take `0 = 1. We may then choose the other `ms freely,
in order to minimize the sum ∑

x∈Nk
θ(x)

νx

x!
= eν

∑
α·m≤1

λm
νm

m!
,

where we have again adopted the multiplicative notations νx :=
∏
i ν

xi
i and x! =

∏
i xi!, and the

sieve weights λm are given by the formula

λm =
∑

a,b≤m≤a+b

m!

(m− a)!(m− b)!(a+ b−m)!
`a`b.

Rewriting the sum we wish to minimize as a quadratic form in the `s, it becomes

eν
∑
a,b

`a`b
∑

a,b≤m≤a+b

νm

(m− a)!(m− b)!(a+ b−m)!
.

In an attempt to separate the variables a bit, we set k = a+ b−m, and rewrite this as

eν
∑
k

∑
a,b≥k

`a`b
νa+b−k

(b− k)!(a− k)!k!
= eν

∑
k

νk

k!

(∑
a≥k

`a
νa−k

(a− k)!

)2
.

Now we’ve diagonalized our quadratic form. Setting

ξk = (−1)k
∑
a≥k

`a
νa−k

(a− k)!
,

we have an analogue of the Möbius inversion formula:

`b =
∑
a≥b

`a
νa−b

(a− b)!
∑
a≥k≥b

(
a− b
a− k

)
(−1)k−b

= (−1)b
∑
k≥b

ξk
νk−b

(k − b)!
.

Thus we wish to minimize the quadratic form

eν
∑
k

ξ2k
νk

k!

subject to the requirement that the ξks are supported on α · k ≤ 1
2 and the linear constraint

`0 =
∑
k

ξk
νk

k!
= 1.

The Cauchy-Schwartz inequality gives( ∑
α·k≤ 1

2

ξ2k
νk

k!

)( ∑
α·k≤ 1

2

νk

k!

)
≥
( ∑
α·k≤ 1

2

ξk
νk

k!

)2
= `20 = 1,

with equality when the ξk are all equal.

Theorem 6 (Selberg’s upper bound sieve). If we define `m by

`m = (−1)m

∑
α·(k+m)≤ 1

2

νk

k!∑
α·k≤ 1

2

νk

k!
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and

θ(x) =
( ∑
α·m≤ 1

2

`m

(
x

m

))2
,

then

F (ν, α) ≤
∑
x∈Nk

θ(x)
νx

x!
=

eν∑
α·k≤ 1

2

νk

k!

.

Taking a limit, if we define σκ(s) by

σκ(s) := lim
ε→0

e−
∫ 1
s
ε

κ(x)
x
dx
∑
k

1

k!

∫ 1
s

ε
· · ·
∫ 1

s

ε
1{

∑
i xi≤

1
2
}

∏
i≤k

κ(xi)

xi
dx1 · · · dxk,

then

Fκ(s) ≤ 1

σκ(s)
.

The sums which occur in Selberg’s sieve have a probabilistic interpretation: if the Xi are inde-
pendent Poissons with parameters νi, then

P[α ·X ≤ 1
2 ] = e−ν

∑
α·k≤ 1

2

νk

k!
.

If we only want a quick-and-dirty estimate in the region where α · ν and 1
s

:= maxαi are small, we
can use Markov’s inequality to get

P[α ·X ≤ 1
2 ] ≥ 1− e−t/2E[etα·X ]

= 1− e−t/2
∏
i

eνi(e
tαi−1)

for any t ≥ 0. Since sαi ≤ 1, we can simplify this with the bound

etαi − 1 ≤ sαi(et/s − 1)

to get

P[α ·X ≤ 1
2 ] ≥ 1− e−t/2+s(α·ν)(et/s−1).

The best choice for t is s ln(1/(2α · ν)), which will be ≥ 0 as long as α · ν ≤ 1
2 .

Corollary 3 (Fundamental Lemma for upper bound sieves). For any ν, α with α · ν ≤ 1
2 and

maxαi ≤ 1
s , we have

F (ν, α) ≤ 1

1− e−
s
2

(
ln(1/(2α·ν))+2(α·ν)−1

) .
Taking a limit, we see that for any κ, s with

∫ 1
s
0 κ(x) dx ≤ 1

2 we have

Fκ(s) ≤ 1

1− e−
s
2

(
ln(1/(2

∫ 1/s
0 κ(x) dx))+2

∫ 1/s
0 κ(x) dx−1

) .
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