
Keep completing the square!

Suppose someone hands you a quadratic polynomial in several variables, such as

x2 + 2xy − 2xz + 2y2 + 2yz + 6z2 − z + 1,

and asks you to check whether it is always ≥ 0. How do you do it?
The trick to this is a slight generalization of the high school procedure known as “completing

the square”, which I like to call “keep completing the square” (I stumbled on this method after
meditating on what the Cholesky decomposition really meant in terms of quadratic polynomials).
We start by trying to write down a square that agrees with our polynomial at least as far as x is
concerned, that is, we try to solve the equation

(x + Ay + Bz + C)2 = x2 + 2xy − 2xz + ...,

for A,B,C (and ignoring the ..., since it doesn’t involve x). In this case, we can take A = 1, B =
−1, C = 0, and we get

(x + y − z)2 = x + 2xy − 2xz + y2 − 2yz + z2.

Since that doesn’t completely match our polynomial, we look at the difference:

(x2 + 2xy − 2xz + 2y2 + 2yz + 6z2 − z + 1)− (x + y − z)2 = y2 + 4yz + 5z2 − z + 1.

Now we complete the square again, this time with y, and so on. Writing the whole process in one
string of equalities, we get

x2 + 2xy − 2xz + 2y2 + 2yz + 6z2 − 2z + 1 = (x + y − z)2 + y2 + 4yz + 5z2 − z + 1

= (x + y − z)2 + (y + 2z)2 + z2 − z + 1

= (x + y − z)2 + (y + 2z)2 + (z − 1
2)2 + 3

4 ,

and this is clearly positive, since it is a sum of squares.
Let’s do a more complicated example (the previous example was clearly chosen to let you avoid

taking any square roots). What if we are faced with something like

6x2 − 4xy + 2xz + 3y2 − 4yz + 2z2?

At the very first step, it seems like we’ll have to take the square root of 6. What a mess! Here’s
how to avoid the mess: instead of starting with a square like

(
√

6x + Ay + Bz)2,
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instead we start by looking for something like

6(x + Ay + Bz)2.

Now we can find A,B by simple division, and we get A = −1
3 , B = 1

6 . Continuing, we get

6x2 − 4xy + 2xz + 3y2 − 4yz + 2z2 = 6(x− 1
3y + 1

6z)2 + 7
3y

2 − 10
3 yz + 11

6 z
2

= 6(x− 1
3y + 1

6z)2 + 7
3(y − 5

7z)2 + 9
14z

2,

which is again obviously positive since it has been written as a sum of squares with positive
coefficients. (By the way, I came up this polynomial by expanding out (x − y)2 + (x + y − z)2 +
(2x− y + z)2 - so we see that there can be multiple ways to write the same polynomial as a sum of
squares. If we had processed the variables in a different order, we could come up with yet another
way to write it as a sum of squares!)

What happens if we try to do this to a quadratic polynomial which isn’t always ≥ 0? Obviously,
something has to go wrong. Let’s try the polynomial

x2 − 4xy + 2xz + y2 − 2yz + 2z2.

The first step goes just fine: we get

x2 − 4xy + 2xz + y2 − 2yz + 2z2 = (x− 2y + z)2 − 3y2 + 2yz + z2.

But now we have a problem: the coefficient of y2 is negative. Could our polynomial still be ≥ 0?
Maybe the z2 and the (x− 2y + z)2 somehow always conspire to be larger than 3y2? Nope! To see
why, just set z to 0, and choose x to make x−2y+z equal to 0, for instance, take z = 0, y = 1, x = 2.

In the previous example, we had a problem because the coefficient of y2 was negative. What if
the coefficient of y2 comes out to exactly 0? For an example, let’s consider the polynomial

x2 − 2xy − 2xz + y2 − 2yz + 10z2.

After the first step, we get

x2 − 2xy − 2xz + y2 − 2yz + 2z2 = (x− y − z)2 − 4yz + 9z2.

To show that this sometimes goes negative, we will take z to be whatever nonzero value we like -
say, take z = 1 - and then pick y to make −4yz + 9z2 come out negative (we can do this since, for
any fixed nonzero z, −4yz + 9z2 is a linear function of y with a nonzero y-coefficient), and finally
pick x to make x− y − z equal to 0. For instance, we can take z = 1, y = 3, x = 4.

At the end of the day, we have a procedure that starts with a quadratic polynomial in any
number of variables, and either writes it as a sum of squares with positive coefficients, or spits out
a point where it is negative! We summarize in the following theorem.

Theorem. Suppose that Q(x1, ..., xn) =
∑

i,j aijxixj +
∑

i aixi + a, where aij , ai, a are some coef-
ficients. Then either we can write Q in the form

Q(x1, ..., xn) =
n∑

i=1

ci(xi + bi(i+1)xi+1 + · · ·+ binxn + bi)
2 + c

with ci ≥ 0 for all i and c ≥ 0, or else we can find a point (x1, ..., xn) such that Q(x1, ..., xn) < 0.
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In the case of homogeneous quadratic polynomials, people often like to represent their coeffi-
cients in a symmetric matrix. In the three variable case, the matrixa b d

b c e
d e f


corresponds to the polynomial

ax2 + 2bxy + cy2 + 2dxz + 2eyz + fz2.

Why the random factors of 2? This is because we have the nice formula

[
x y z

] a b d
b c e
d e f

xy
z

 = ax2 + 2bxy + cy2 + 2dxz + 2eyz + fz2.

When we follow the “keep completing the square” procedure for this general three variable
homogeneous quadratic, we get

ax2 + 2bxy + cy2 + 2dxz + 2eyz + fz2 = a(x + b
ay + d

az)2 + ac−b2

a y2 + 2ae−bd
a yz + af−d2

a z2

= a(x + b
ay + d

az)2 + ac−b2

a (y + ae−bd
ac−b2

z)2 + (af−d2)(ac−b2)−(ae−bd)2

a(ac−b2)
z2

= a(x + b
ay + d

az)2 + ac−b2

a (y + ae−bd
ac−b2

z)2 + acf+2bde−ae2−b2f−cd2

ac−b2
z2.

Curiously, the coefficients in that last formula happen to be ratios of determinants:

det
[
a
]

= a,

det

[
a b
b c

]
= ac− b2,

det

a b d
b c e
d e f

 = acf + 2bde− ae2 − b2f − cd2.

So we’ve proved that a three variable homogeneous quadratic is ≥ 0 if those three determinants
are all positive!

Exercise. Generalize this determinant formula to any number of variables.
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