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Sieve theory

I Take an interval A of consecutive whole numbers, such as
[5, 9] = {5, 6, 7, 8, 9}.

I Remove the multiples of some collection of primes P from this
interval. Call the set that remains S(A,P).

I For instance, if P = {2, 3}, then S([5, 9], {2, 3}) = {5, 7}.

I The big question:

What can we say about |S(A,P)|?

I Pretend that we know P, and that we know the length of A,
but we don’t know the endpoints of A.
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Probabilistic version

I Suppose we pick a uniformly random number n from the
interval A.

I Although we don’t know exactly what A is, we do know that
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The näıve approaches don’t work

I If we ignore the 1/|A| error terms, we can use P.I.E. to predict

P[n ∈ S(A,P)]
?
≈
∏
p∈P

(
1− 1

p

)
.

I This guess is completely wrong!

I Take A = [1,N] and take P√N to be the set of primes below√
N.

I The guess above predicts that

P[n ∈ S([1,N],P√N)]
?
≈
∏

p<
√
N

(
1− 1

p

)
≈ e−γ

log(
√
N)
.

I But the true value is

P[n ∈ S([1,N],P√N)] ≈ 1

log(N)
.
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The näıve approaches don’t work

I So we can’t ignore the error terms.

I Let’s be really conservative this time, and try the union bound:

P[n ∈ S(A,P)] ≥ 1−
∑
p∈P

(1

p
+

1

|A|

)
.

I Now the error terms are under control, and at first this seems
to be working well...

I The problem is that ∑
p≤N

1

p
≈ log(log(N))

diverges. This kills most simple variants of the above idea.
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Bucketing approach

I Since
∑

p
1
p diverges, a good strategy is to put primes in

buckets:
P = P1 t P2 t · · · t Pk .

I We choose our buckets so that each sum∑
p∈Pi

1

p

is of size � 1.

I This corresponds to taking buckets of the form

Pi = P ∩ [|A|1/s , |A|1/t ].

I Buckets corresponding to smaller primes → smaller error
terms → näıve P.I.E. guess is a better approximation.
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The model problem

I Most of the asymptotic error comes from the bucket
containing the largest primes.

I The model problem asks: what if that was the only bucket?

I Suppose we have

p ∈ P =⇒ p ∈ [|A|1/(k+1), |A|1/k ].

I Then for any p1, ..., pk ∈ P, we know that

P[p1 · · · pk divides n] =
1

p1 · · · pk
+ O

( 1

|A|

)
.

I So the primes in P are uncorrelated when considered at most
k at a time.
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Simplification of model problem

I Since the primes all have roughly the same size, we treat them
as interchangeable.

I Define a random variable X by

X = #{p ∈ P such that p divides n}.

I The expected size of X is

E[X ] ≈
∑
p∈P

1

p
.

I The second moment of X is given by

E
[(X

2

)]
≈

∑
p<q∈P

1

pq
≈ 1

2

(∑
p∈P

1

p

)2
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A Poisson imitator appears

I For each i ≤ k, we see that

E
[(X

i

)]
≈ E[X ]i

i !
.

I These are exactly the first k moments of a Poisson
distribution!

I (We have no idea about the higher moments of X .)

I We want to estimate

P[n ∈ S(A,P)] = P[X = 0].
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Our problem

I Forget all the previous stuff.

I We have a random variable X ∈ N, a Poisson parameter
ν ∈ R+, and k ∈ N, s.t.

i ≤ k =⇒ E
[(X

i

)]
=
ν i

i !
.

I What are the best bounds we can put on

P[X = 0]?

I For which ν, k can we prove that

P[X = 0] > 0?
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Markov’s inequality

I How do we use the moment information?

I Consider a polynomial θ(x) of degree k:

θ(x) = λ0 + λ1x + λ2

(
x

2

)
+ · · ·+ λk

(
x

k

)
.

I Our moment information tells us that

E[θ(X )] = λ0 + λ1ν + λ2
ν2

2
+ · · ·+ λk

νk

k!
.

I If θ(x) ≤ 0 for x ∈ {1, 2, ...}, we get

E[θ(X )] ≤ P[X = 0]θ(0).
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Convex optimization

I Our proof method is to write down a polynomial θ(x) such
that:

I θ has degree at most k,
I θ(0) = 1,
I for all x ∈ N+, θ(x) ≤ 0,

I and to conclude that

P[X = 0] ≥ E[θ(X )] = e−ν
∑
n

θ(n)
νn

n!
.

I Are there any better ways to prove a lower bound on
P[X = 0]?

I A general duality result in convex optimization says that the
best lower bound using this strategy is equal to the least
possible value of P[X = 0].
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Optimizing our choice of θ

I Selberg was able to compute the optimal choices of θ by hand
for single digit values of the degree k .

I How?

I To ensure that θ(x) ≤ 0 for x ∈ N+, we write θ in terms of its
roots:

θ(x) =

(
1− x

r1

)(
1− x

r2

)
· · ·
(

1− x

rk

)
.

I If there are any complex roots, replacing them with their real
parts strictly improves our objective function.

I Removing negative roots also strictly improves our objective
function.

I Since coefficients of θ are linear in 1/ri , each ri may be taken
to be a whole number.
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A simplex algorithm you can run by hand

I Our function θ can now be completely described by listing out
its (integer) roots.

I Such a θ satisfies our requirements if:

I 1 is the least root of θ, and
I the remaining roots of θ can be paired up so that each pair of

roots are at most 1 apart.

I Our objective function is e−ν
∑

n θ(n)ν
n

n! =
∑

i λi
ν i

i! .

I We can “pivot” our choice of θ by moving one of its roots,
while keeping the other roots fixed.

I Proposition

If no pivot increases the objective value, then θ is (globally)
optimal.
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...or by computer

k critical νk roots of the optimal θ

1 1 1
3 2 1, {3, 4} or 1, {4, 5}
5 3.11714 1, {3, 4}, {7, 8}
7 4.14377 1, {3, 4}, {6, 7}, {11, 12}
9 5.23808 1, {3, 4}, {6, 7}, {10, 11}, {14, 15}

1001 ≈ 503.37 1, {3, 4}, {5, 6}, {7, 8}, ...
2001 ≈ 1004 1, {3, 4}, {5, 6}, {7, 8}, ...

I Selberg conjectured that νk � k
2 based on hand calculations.

I Selberg was able to prove that⌊k + 1

2

⌋
≤ νk ≤ k

for all k .
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Selberg’s lower bound

I Selberg has a famous construction of a “good enough” sieve
which is easy to work with.

I In this context, we try θ of the form

θ(x) = (1− x)f (x)2,

for an arbitrary polynomial f (x) of degree d = k−1
2 .

I The objective becomes a quadratic function of the coefficients
of f (x).

I By a miracle, we can optimize this quadratic form by hand!
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Selberg’s lower bound: the quadratic form

I Write out f in the binomial basis as

f (n) =
∑
r≤d

`r

(
n

r

)
.

I We change coordinates to yr given by

yr = (−1)r
∑
i≥0

`r+i
ν i

i !
.

I Our objective function is

e−v
∑
n≥0

(1− n)f (n)2
νn

n!
=
∑
r

νr

r !
y2r −

∑
r

νr+1

r !
(yr − yr+1)2.

I This becomes negative semidefinite when ν = d + 1 = k+1
2 .
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Can we make a better sieve?

I I want to know how much we can improve Selberg’s
construction.

I Idea: We know the optimal θ has the form

θ(x) = (1− x)f (x)f (x + 1)

for some polynomial f with integer roots.

I What if we drop the condition that f has integer roots?

I This will over-estimate the best possible lower bound on
P[X = 0].
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A more difficult quadratic form

I We use the same change of variables yr as in Selberg’s
construction.

I Our objective function is

e−v
∑
n≥0

(1− n)f (n)f (n + 1)
νn

n!
=

∑
r

νr

r !
yr (yr − yr+1)−

∑
r
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r !
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I Selberg had to deal with a tridiagonal matrix, I have to deal
with a pentadiagonal matrix!
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Everything somehow works out

I I want to prove that this horrible pentadiagonal symmetric
matrix is negative semidefinite for ν large.

I I computed the Cholesky decomposition for numerical
examples to get a hint.

I Eventually I found a (somewhat) clean proof that that it is
negative semidefinite for ν ≥ (

√
d + 1)2.

I Theorem
For k = 2d + 1, we have νk ≤ d + 2

√
d + 1.

I This result is not best-possible: numerical calculations

indicate it can be improved to νk ≤ d +
√
d
2 + O(1).
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Can we really get a square-root improvement?

I In our relaxed setting, it is possible to construct a polynomial
f (x) of degree d such that∑

n≥0
(1− n)f (n)f (n + 1)

νn

n!
> 0

with ν ≥ d + Ω(
√
d).

I Does this mean that ν2d+1 ≥ d + Ω(
√
d)?

I The first few roots of such an f (for d ∼ 500) are

1, {2.53, 3.53}, {5.19, 6.19}, {7.43, 8.43}, ...

I Most of the improvement can be traced back to allowing the
second and third roots to be at 2.5 and 3.5.
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How much of an improvement can we really get?

I I don’t believe in a square-root improvement, but I want to
show there is a real, definite improvement we can make.

I Idea: Take the roots from Selberg’s construction, and round
each multiplicity-two root up and down.

I Numerically, this seems to give us a (small) improvement.

I Problem: we can’t guarantee that doing this rounding won’t
make things worse.
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How to make an improvement safely

I Recall our objective function (up to scale):∑
n

θ(n)
νn

n!
.

I Every single summand, other than θ(0), is negative (or 0).

I Idea: To guarantee that the objective increases, we try to
decrease the absolute value |θ(n)| for all n ∈ N+.
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Safer rounding

I Write Selberg’s θ(x) as a product:

θ(x) = (1− x)
(

1− x

r1

)2
· · ·
(

1− x

rd

)2
.

I Replace each factor (1− x/ri )
2 by a quadratic qi (x) such

that:

I qi (0) = 1,
I qi (x) ≥ 0 for x ∈ N+,
I qi (x) ≤ (1− x/ri )

2 for x ∈ N+, and
I at least one of bric, drie is a root of qi (x).

I This definitely doesn’t hurt us. Does it help?

I We can now guarantee that at least one of θ(bric), θ(drie) has
been replaced with 0!
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An understandable improvement

I If we perform the safer rounding, we guarantee improving our
(rescaled) objective function by at least

∑
ri

min
(∣∣θ(bric)

∣∣νbric
bric!

,
∣∣θ(drie)

∣∣νdrie
drie!

)
.

I So now we need to understand two things:

I Where are the roots of Selberg’s function θ?
I How big is θ at the nearby integers?

I We have exact, combinatorial formulas for the coefficients of
Selberg’s function.

I Slight wrinkle: Selberg’s function is optimized for ν = d + 1.
So we modify it for larger ν, before rounding.
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Explicit formula for Selberg’s function

I Selberg’s function is θ(x) = (1− x)f (x)2, where f is given by

f (n + 2) =
1

(d + 1)n+1

∑
i

(−1)ia(n, i)d i .

I Here a(n, i) is the number of permutations of an n-set having
exactly i cycles of size greater than 1.

I For ν > d + 1, we use the function fν given by

fν(n + 2) =
1

νn+1

∑
i

(−1)iaq(n, i)d i ,

where q = ν − d and

aq(n, i) =
∑

σ∈Sn,i nontrivial cycles
q#Fix(σ).
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Let’s at least understand f (3) and f (4)

I To understand the contribution from rounding at the smallest
root, we compute fν(3) and fν(4).

I We have

fν(1 + 2) =
1

ν1+1
(aq(1, 0)d0) =

q

ν2
,

and

fν(2 + 2) =
1

ν2+1
(aq(2, 0)d0 − aq(2, 1)d1) = −d − q2

ν3
.

I These have opposite sign, so fν has a root between 3 and 4,
and both |fν(3)|, |fν(4)| are � 1

d2 .

I Most of the contribution to fν(n) comes from permutations
which are almost entirely 2-cycles, so the result depends
heavily on whether n is even or odd.



Let’s at least understand f (3) and f (4)

I To understand the contribution from rounding at the smallest
root, we compute fν(3) and fν(4).

I We have

fν(1 + 2) =
1

ν1+1
(aq(1, 0)d0) =

q

ν2
,

and

fν(2 + 2) =
1

ν2+1
(aq(2, 0)d0 − aq(2, 1)d1) = −d − q2

ν3
.

I These have opposite sign, so fν has a root between 3 and 4,
and both |fν(3)|, |fν(4)| are � 1

d2 .

I Most of the contribution to fν(n) comes from permutations
which are almost entirely 2-cycles, so the result depends
heavily on whether n is even or odd.



Let’s at least understand f (3) and f (4)

I To understand the contribution from rounding at the smallest
root, we compute fν(3) and fν(4).

I We have

fν(1 + 2) =
1

ν1+1
(aq(1, 0)d0) =

q

ν2
,

and

fν(2 + 2) =
1

ν2+1
(aq(2, 0)d0 − aq(2, 1)d1) = −d − q2

ν3
.

I These have opposite sign, so fν has a root between 3 and 4,
and both |fν(3)|, |fν(4)| are � 1

d2 .

I Most of the contribution to fν(n) comes from permutations
which are almost entirely 2-cycles, so the result depends
heavily on whether n is even or odd.



Let’s at least understand f (3) and f (4)

I To understand the contribution from rounding at the smallest
root, we compute fν(3) and fν(4).

I We have

fν(1 + 2) =
1

ν1+1
(aq(1, 0)d0) =

q

ν2
,

and

fν(2 + 2) =
1

ν2+1
(aq(2, 0)d0 − aq(2, 1)d1) = −d − q2

ν3
.

I These have opposite sign, so fν has a root between 3 and 4,
and both |fν(3)|, |fν(4)| are � 1

d2 .

I Most of the contribution to fν(n) comes from permutations
which are almost entirely 2-cycles, so the result depends
heavily on whether n is even or odd.



Saddle point method

I I continued with the combinatorial analysis, eventually proving
that aq(n, i) is log-concave in i in order to get strong enough
approximations...

I My advisor (Sound) suggested a different approach.

I We can compute fν via a contour integral:

fν(n + 2) =
n!

2πi

∫
C
eνz(1− z)d

dz

zn+1
.

I The integrand has saddle points at z0, z̄0 solving the quadratic

νz20 − (n + q)z0 + n = 0.

I Either way, we get a somewhat complicated sinusoidal
expression for fν .
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The dust settles

Theorem
If k = 2d + 1 then

νk − d ≥ (c + o(1))
3
√
d ,

where c ≈ 1
12.14 is the greatest positive solution of the inequality∫ ∞

0

1

x3/2
min

(
sin2

(
( x3 + c)

√
x
)
, cos2

(
( x3 + c)

√
x
))

dx ≥ 2πc .



Thank you for your attention.


