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Sieve theory

» Take an interval A of consecutive whole numbers, such as
[5,9] = {5,6,7,8,9}.

» Remove the multiples of some collection of primes P from this
interval. Call the set that remains S(A, P).

» For instance, if P = {2,3}, then 5([5,9],{2,3}) = {5,7}.

» The big question:
What can we say about [S(A,P)|?

> Pretend that we know P, and that we know the length of A,
but we don't know the endpoints of A.
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Probabilistic version

» Suppose we pick a uniformly random number n from the

interval A.

> Although we don’t know exactly what A is, we do know that

1 1 1 1
- — — < PP[2 divid <=+ —.
> A S [ |V|esn]_2+‘A‘

» We also know that

1 1 1 1
= — — < P[3 divides n] < §+

3 A Al’
1 1 1 1

— — — < P[6 divid <z 4+ .
6 A S [ |V|esn]_6+‘A‘

» So we can say that

B[ € S(A, {2.3})] > 1—(;+|j|)—(§+‘j\|)+(

1 1

6 |A

).
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The naive approaches don't work
> If we ignore the 1/|A| error terms, we can use P.LLE. to predict
? 1
Plne S(AP) ~ [] (1 - f).
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v

This guess is completely wrong!
Take A = [1, N] and take P /5 to be the set of primes below

VN.

The guess above predicts that

v

v

? 1 e
Pln e S([1, N], P ~ || l—— )~ —F.
[n e S([1, N, Pp)l - N( p> log(v/N)

v

But the true value is

1

P[n € S([1, NI, P 5)] ~ Tog(N)’
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The naive approaches don't work
» So we can't ignore the error terms.

> Let's be really conservative this time, and try the union bound:

Plne SAP)]=1-3 ([1) + i“)
peEP

» Now the error terms are under control, and at first this seems
to be working well...

» The problem is that

3 ;1: ~ log(log(N))

p<N

diverges. This kills most simple variants of the above idea.
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Bucketing approach

» Since Zp% diverges, a good strategy is to put primes in
buckets:
P=PiUPyU---UPg.

» We choose our buckets so that each sum
>
pEP; P

is of size =< 1.

» This corresponds to taking buckets of the form
Pi=PN[AY, A,

> Buckets corresponding to smaller primes — smaller error
terms — naive P.I.E. guess is a better approximation.
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» Suppose we have
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The model problem

» Most of the asymptotic error comes from the bucket
containing the largest primes.

» The model problem asks: what if that was the only bucket?

» Suppose we have
peP = pe[AYED |AMA.

> Then for any p1, ..., px € P, we know that

1
Plp1 - - - px divides n :7—1—0( )
[ ] p1-- - Pk Al
» So the primes in P are uncorrelated when considered at most
k at a time.
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Simplification of model problem

» Since the primes all have roughly the same size, we treat them
as interchangeable.

» Define a random variable X by
X = #{p € P such that p divides n}.
> The expected size of X is

EX]~ ) ;.

peEP
» The second moment of X is given by

B[(5)]~ X o~3(X3)

p<q€P
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A Poisson imitator appears

v

For each i < k, we see that

[(¥)) = 2L

These are exactly the first kK moments of a Poisson
distribution!

v

v

(We have no idea about the higher moments of X.)

We want to estimate

v

P[n € S(A, P)] = P[X = 0].
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Our problem
> Forget all the previous stuff.

» We have a random variable X € N, a Poisson parameter
veRY, and k € N, s.t.

i<k = E[()I()} :Z
» What are the best bounds we can put on
P[X =0]?
» For which v, k can we prove that

P[X = 0] > 0?
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Markov's inequality

» How do we use the moment information?

» Consider a polynomial 0(x) of degree k:

H(X):)\o+)\1x+>\2<;> +---+)\k<);>.

» Our moment information tells us that

v? vk
E[H(X)] = )\0 + \v+ )\2? + -+ )\kﬂ
» If O(x) <0 for x € {1,2,...}, we get

E[9(X)] < P[X = 0]4(0).
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Convex optimization

» Our proof method is to write down a polynomial 6(x) such

that:
> 6 has degree at most k,
» 6(0) =1,

» for all x € NT, 6(x) <0,

» and to conclude that

PIX = 0] > E[0(X)] = e Ze(n)%:.

> Are there any better ways to prove a lower bound on
P[X =0]?

» A general duality result in convex optimization says that the
best lower bound using this strategy is equal to the least
possible value of P[X = 0].
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Optimizing our choice of

» Selberg was able to compute the optimal choices of § by hand
for single digit values of the degree k.

» How?

» To ensure that §(x) < 0 for x € NT, we write 6 in terms of its

roots:
- (-3)(-2) - (-5)

> If there are any complex roots, replacing them with their real
parts strictly improves our objective function.

» Removing negative roots also strictly improves our objective
function.

» Since coefficients of @ are linear in 1/r;, each r; may be taken
to be a whole number.
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A simplex algorithm you can run by hand

» Our function 6 can now be completely described by listing out
its (integer) roots.
» Such a 0 satisfies our requirements if:

» 1 is the least root of 6, and
» the remaining roots of # can be paired up so that each pair of
roots are at most 1 apart.

» Our objective function is e 3", 0(n)% =3 )\,-’I’.—!i.

> We can “pivot” our choice of § by moving one of its roots,
while keeping the other roots fixed.

» Proposition
If no pivot increases the objective value, then 0 is (globally)
optimal.



...or by computer

k critical vy roots of the optimal 6

1 1 1

3 2 1,{3,4} or 1,{4,5}

5 3.11714 1,{3,4},{7,8}

7 4.14377 1,{3,4},{6,7},{11,12}

9 5.23808 | 1,{3,4},{6,7},{10,11},{14,15}
1001 | ~ 503.37 1,{3,4},{5,6},{7,8}, ...
2001 | = 1004 1,{3,4},{5,6},{7,8}, ...




...or by computer

k critical vy roots of the optimal 6

1 1 1

3 2 1,{3,4} or 1,{4,5}

5 3.11714 1,{3,4},{7,8}

7 4.14377 1,{3,4},{6,7},{11,12}

9 5.23808 | 1,{3,4},{6,7},{10,11},{14,15}
1001 | ~ 503.37 1,{3,4},{5,6},{7,8}, ...
2001 | = 1004 1,{3,4},{5,6},{7,8}, ...

» Selberg conjectured that vy < g based on hand calculations.



...or by computer

k critical vy roots of the optimal 6

1 1 1

3 2 1,{3,4} or 1,{4,5}

5 3.11714 1,{3,4},{7,8}

7 4.14377 1,{3,4},{6,7},{11,12}

9 5.23808 | 1,{3,4},{6,7},{10,11},{14,15}
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2001 | = 1004 1,{3,4},{5,6},{7,8}, ...

» Selberg conjectured that vy < g based on hand calculations.

» Selberg was able to prove that

CE

for all k.
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» Selberg has a famous construction of a “good enough” sieve
which is easy to work with.

> In this context, we try 6 of the form
0(x) = (1 = x)f(x),

: : _ k=1
for an arbitrary polynomial f(x) of degree d = “5~.

» The objective becomes a quadratic function of the coefficients
of f(x).

» By a miracle, we can optimize this quadratic form by hand!
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Selberg's lower bound: the quadratic form

» Write out f in the binomial basis as

f(n) = Ze,(’r’).

r<d

» We change coordinates to y, given by

Vi
}/r = (—]_)r Zz,qui

i>0
» Qur objective function is
_ 2yn ' ) Z/r-i-l )
e Z(l — n)f(n) oo Z T Z ’l (yr = Yr1)”
n>0 r r

» This becomes negative semidefinite when v =d 4+ 1 = %
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Can we make a better sieve?

v

| want to know how much we can improve Selberg's
construction.

v

Idea: We know the optimal 8 has the form
O(x) = (1 —x)f(x)f(x+1)

for some polynomial f with integer roots.

v

What if we drop the condition that f has integer roots?

v

This will over-estimate the best possible lower bound on
P[X = 0].
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A more difficult quadratic form

» We use the same change of variables y, as in Selberg's
construction.

» Our objective function is

_y 2
e > (1—n)f(n)f(n+ 1) =
n>0
' r+1
D vy =) = D0 (v =y ) = 2yes1 + Yier2),

r r
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Everything somehow works out

» | want to prove that this horrible pentadiagonal symmetric
matrix is negative semidefinite for v large.

» | computed the Cholesky decomposition for numerical
examples to get a hint.

» Eventually | found a (somewhat) clean proof that that it is
negative semidefinite for v > (v/d + 1)2.

» Theorem
For k =2d + 1, we have v, < d +2vVd + 1.

» This result is not best-possible: numerical calculations
indicate it can be improved to v < d + @ + O(1).
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Can we really get a square-root improvement?

> In our relaxed setting, it is possible to construct a polynomial
f(x) of degree d such that

Vn

> (1= n)f(n)f(n+1)— >0

. nl
with v > d + Q(Vd).
» Does this mean that vo441 > d + Q(ﬁ)?
» The first few roots of such an f (for d ~ 500) are

1,{2.53,3.53}, {5.19,6.19}, {7.43,8.43}, ...

» Most of the improvement can be traced back to allowing the
second and third roots to be at 2.5 and 3.5.
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How much of an improvement can we really get?

v

| don't believe in a square-root improvement, but | want to
show there is a real, definite improvement we can make.

Idea: Take the roots from Selberg’s construction, and round
each multiplicity-two root up and down.

Numerically, this seems to give us a (small) improvement.

Problem: we can't guarantee that doing this rounding won't
make things worse.
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How to make an improvement safely

» Recall our objective function (up to scale):
Vn
>0
n
» Every single summand, other than 6(0), is negative (or 0).

> ldea: To guarantee that the objective increases, we try to
decrease the absolute value |6(n)| for all n € NT.
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Safer rounding

» Write Selberg’s 6(x) as a product:

f(x) = (17X)(17 i)z--- (pi)z.

rn

» Replace each factor (1 — x/r;)? by a quadratic g;(x) such

that:
> qi(0) =1,
» gi(x) >0 for x € NT,
> qi(x) < (1 —x/r;)? for x € N*, and
> at least one of |r;], [r;] is a root of g;(x).

> This definitely doesn't hurt us. Does it help?

» We can now guarantee that at least one of 6(|r;|),0([ri]) has
been replaced with 0!
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An understandable improvement

> If we perform the safer rounding, we guarantee improving our
(rescaled) objective function by at least

. UL”J l/[’ﬂ
zri: min (}9( Lr,J)‘W, H(UIW)IW)

» So now we need to understand two things:

» Where are the roots of Selberg's function 07
» How big is 8 at the nearby integers?

» We have exact, combinatorial formulas for the coefficients of
Selberg’s function.

» Slight wrinkle: Selberg's function is optimized for v = d + 1.
So we modify it for larger v, before rounding.
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Explicit formula for Selberg’s function
» Selberg’s function is (x) = (1 — x)f(x)?, where f is given by

1

f(n+2)= @r 1) a(n, i)d’

» Here a(n, i) is the number of permutations of an n-set having
exactly i cycles of size greater than 1.

» For v > d + 1, we use the function £, given by
f,(n+2)= nHZ ) ag(n,i)d",

where g = v — d and

ag(n,i) = Z gt Fix(@)

0 €Sp,i nontrivial cycles
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Let's at least understand f(3) and f(4)

» To understand the contribution from rounding at the smallest
root, we compute f,(3) and f,(4).

» We have

q
2’

f(1+2) = (a4(1,0)d°) =

I+
and

d — g2
v3

(2 +2) = 51 (30(2,0)d° — 3g(2, 1)) = -

2+1(

» These have opposite sign, so f, has a root between 3 and 4,
and both |£,(3)],|£,(4)| are > %.

» Most of the contribution to f,(n) comes from permutations
which are almost entirely 2-cycles, so the result depends
heavily on whether n is even or odd.
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Saddle point method

> | continued with the combinatorial analysis, eventually proving
that a4(n, i) is log-concave in i in order to get strong enough
approximations...

» My advisor (Sound) suggested a different approach.

» We can compute f, via a contour integral:

I d.
tn+2) = o [ -2y

2mwi
» The integrand has saddle points at zy, Zy solving the quadratic
vzg — (n+q)z0 +n=0.

» Either way, we get a somewhat complicated sinusoidal
expression for f,,.



The dust settles

Theorem
If k =2d + 1 then

vk —d > (c+o(1))Vd,

where ¢ ~ is the greatest positive solution of the inequality

1
12.14

[ min s (G5 4 ) o ((5 4 V) ) a2



Thank you for your attention.



