NEW UPPER AND LOWER BOUND SIFTING ITERATIONS

ZARATHUSTRA BRADY

1. INTRODUCTION

Let A be a (possibly weighted) set of whole numbers, and for each positive integer d set Ay =
{a € A,d | a}. Suppose that k, z,y are such that for every squarefree integer d, all of whose prime
factors are less than z, we have

(1) |Ad| — nw@% <1

In particular, we have y — 1 < |A| < y + 1. We want to estimate the quantity
S(A2) = {a € AVp <z (ap)=1).

Suppose now that y = z°, s a constant, y, z going to infinity. Define sifting functions fi(s), Fx(s)
by

(o IL (1-5) < sta2) < @+ onmew [T (1-7).
p<z p<z
with f.(s) as large as possible (resp. F,(s) as small as possible) given that the above inequality
holds for all choices of A satisfying (I)). Selberg [3] has shown (in a much more general context)
that the functions f,(s), F(s) are continuous, monotone, and computable for s > 1, and that they
tend to 1 exponentially as s goes to infinity.
Let 8 = (k) be the infimum of s such that f.(s) > 0. Selberg [3] has shown that we have

~ < B <2k +0.4454,

where the first inequality applies for all k > 1 and the second applies for x sufficiently large.
Further, when x =1 we have 5(1) = 2. Our main goal is to get good estimates for 5(x) when « is
slightly greater than 1.

When x < 1, the best known sieves arise from the identity

S(A,2) = Al = 3 8(4,p),

p<z
p running over primes. This identity leads to the inequalities

s"fi(s) > s — Ii/ t" YN Fo(t — 1) — 1)dt,

t>s
s"F,(s) < 8"+ n/ "N — fo(t —1))at.

t>s
The use of these inequalities to produce new bounds on f, Fx; from known bounds is known as
Buchstab iteration (reference?). Infinite iteration of Buchstab’s inequalities leads to what is known
as the (-sieve.

The current state of the art for x slightly greater than 1 is due to Diamond, Halberstam, and

Richert [I]. Their method runs as follows. From Selberg’s upper bound sieve, we have
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where o, (s) solves the differential-difference equation

S_HO',{(S) = m 0<s S 2,
%(s‘”aﬂ(s)) = ks " lo(s—2) 2<s.

Using this as our starting point, we iterate Buchstab’s inequalities infinitely to obtain upper and

lower bounds fP, FP satisfying
1

FE(S):UH(S) 0<s<al,

d
2 (sFP(s)) = ns" P (s — 1) s> aP,

s
fi(s)=0 0<s<p?,

d _

L F2(5)) = hs U ED (s~ 1) 5> 67,

for some a? > P,
In this note we’ll describe variations on Buchstab’s inequalities which allow us to slightly improve
upon the functions fP, FP above.

2. THE NEW ITERATIONS
Theorem 1. For any w < z, we have
2 1
S(A2)<SAw) =% > SApw)+5 Y. S(Apw),
3 3
w<p<z w<q<p<z
where p, q run over primes.

Proof. Let a € A. We need to show that the number of times a is counted on the left hand side
of the above is at least the number of times a is counted on the right. If ¢ has any prime factors
below w, then both quantities are clearly zero, so assume that a is has no prime factors below w.
Suppose a has exactly k prime factors between w and z. If ¥ = 0 then both sides count a once.
Thus we just need to check that for any integer k£ > 1 we have

2 1/k
0<1—<-k+-
- 3 + 3 <2>’
which follows from the identity

00908 :

Corollary 1. For any real t > s > 2, we have
2 d 1 dx d
S E(s) < " (t) — ok / a1 — a4 L // FE((L — 2 —y) LY
3 z 3 Ty
1ca<t 1<y<a<i
Remark 1. The optimal w in Theorem (1| above appears to be w = Z%, which corresponds to taking
t= sfﬁ. Thus this upper bound iteration tends to be useful only for 2 < s < 5+ 1.




Theorem 2. For any w < 2%, we have

S(A,2) = s(avw) - > 5<Ap’7~;)+2 3 S(qu’%)

Vw<p<z P <q<p<z
2 w 1 w
-5 2 S(en) -5 X S(Aen),
%§r<q<p<z %§r<q<p<z
qr<w

where p,q,T Tun over primes.

Proof. Let a € A. First suppose that a has no prime factors below y/w, and has exactly k prime
factors between /w and z. If k is 0, then both sides count a once. Otherwise, we need to check
that for an integer &k > 1 we have

and this follows from the identity

)10 e (1) (-3

Now suppose that a has smallest prime factor s < /w. We group together all of the summands
on the right hand side with a common p, p | a. In order for any such summand to be nonzero, we
must have s > %, or equivalently p > “. Suppose that a has exactly k prime factors strictly below
p. Then the number of times a is counted in such summands is at most

g3 (-4) 0-5)

and this is at most 0 unless £k = 2. Thus the only bad case occurs when p is the third smallest
prime factor of a, g is the second smallest prime factor of a, and r = s is the smallest prime factor
of a. If gr < w, then the contribution from these summands is just

5 2
—14+--2—=-=0
+ 6 3 ’
so the bad case only occurs when gr > w. But then since ¢ > > = **, we can combine this bad

group of summands with the group of summands where p is replaced by ¢, and the total number
of times a is counted in the two groups becomes

) 1 ) 1 1
—1 - .2 - — —1 — = — — —=0. O
< G 2>+< +6) 6 6 "



Corollary 2. For any real s > t with 2t > s > 3, we have

S fuls) > (20)" fu(2t) = & / (11 R(=2) &

— R =
. ;) s/
e (1—w—y)dg@
5" 1oz Jay
*—$<y<13<*
/// (1—3:— —z)dxdydz
_ ,,.{ F. -
;= Ty z
*—$<Z<y<$<*
1 l—z—y—2z\dxdydz
6 “( I, );@”?
¢
f—y<z<y<x<f

Remark 2. As with Theorem it seems that the optimal w in Theorem [2|is w = Z%, corresponding
tot = sfﬂ is lower bound iteration tends to be useful only when 5+ 1 < s < 8+ 2.

3. TWO MIRACLES AT k =1

When x = 1, the -sieve produces the optimal functions f(s) = fi(s), F'(s) = Fi(s) (see Selberg
[3]). Furthermore, we have the more precise error terms

1) gy~ (O ANMS) oo S S(42) S F(6) s + (e o) Hs) s

where ¢ is a computable constant (in fact a more precise result can be found in Iwaniec [2]). The
functions f, I, h, H are given by

Fis) =2 1<s<3
L (5F(s) = f(s - 1) 523
s = 28 = 1) 2<s<4
() = F(s—1) 522
H@%:é 1<s<3
% (sH(s)) = —sh(s — 1) 5>3
h@p:;<1+si1—bgs—n> 2<s<d
i(2h()):—3H(s—1) 5> 2

It’s natural to ask what happens to these functions when we apply the new upper and lower
bound iterations to them.



Theorem 3. Ifk =1, % <s <3, and t = 5, then the two sides of the inequality in Corollary
are precisely equal, that is

sF(s):tF(t)—g / LF(E1 — f+f // LRt ))Cfd;.
1ot —<y<x<;

Furthermore, in this case even the error terms match up'
2 dx d
SH) = PHO+2 [ Phe-a) T+ g [/t%f —) ey

Ty
1cz<d —<y<ac<—

Proof. Consider the right hand side of the first claimed equality as a function ®(s,t) of s and t.

Since sF'(s) = 2€7 is constant for s < 3, it’s enough to check that %—q’ = %cf =0 when t = %5, We
have
0P 2t 1 1 t 1 dz
ooz 1-=)) -2 P(t(1---2))E
Js 35f<< 5>> 3 / s <( s x))a:’
lcacd

t s

f2e

and up to a multiple o this is equal to

o (#(1-1) =1) -5 (s (1= 25 e (s -5

1 -1 1
= —log <t8 . —1) +§log(s—2),

3
Which is indeed 0 when t = %2 In order to calculate %—f, first note that since % < s we have
t = %5 <5, s0 for any z,y > § L wehave t(1 —x —y) <t—2<3,s0
0

S (R — 2~ y)) = 0.

Thus we have

%f—f(t—l)—*f(t—l)—g / F(t(l—x)—l)%+% / F(t(l_x)_l)d;x_i_o’

7<x<% %<x<%

and up to a multiple of thls is equal to

%bg(t—?) _% <log (t— t_t1> — log <5— t_t1>>

which is also equal to 0 when ¢ = 5.

The second claim is left as an involved exercise to the reader (alternatively, one can use the
method of proof of the next theorem). O

Since the lower bound iteration is much more complicated, we need a better method of checking
that it has the linear sieve as a fixed point. For this we use the following weighted sets, introduced
by Selberg [3] in order to explain the parity problem: let A" be the weighted set of integers between
1 and y with the weight attached to n given by 1 — A(n), where A(n) = (—1)%*(™) and let A~ be
similar with the weight of n given by 1+ A(n). Set

7 (y, 2) :S(Ai,z).
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These functions are invariant under Buchstab iteration:

m(y, 2) = 75 (y,w) — Y 7 (y/p.p),

and by the prime number theorem, for 1 < s < 3 we have

7 (y, z) = 2(n(y) — 7(z :EL 3 . ’
(,2) =2(n(y) = 7(2) = == F100 ) + Fioa(a)? +O(log(2)3>’

so for all s > 1 we have

(2) T 2) = P o + M ) + 0 <1og?z>3) |
(3) W(y,z):f(s)mgg(z)_2h(s)1m;(/z)2+0<log?é)3> ‘

Theorem 4. If k =1, % <s5<4, and t = %5, then the two sides of the inequality in Corollary@
are equal, that is

sf(s) = 2tf(2t) — / EF(E

1 1
57 <T<3

5 1 1l—xz—y\dxdy
vo | EDTS

1 1
T-r<y<e<i

2 1 l—xz—y—2z\dxdydz
_z F it Ahered
==

1 1
T r<z<y<z<g

] (e
6 %—1‘ 1_ Ty z

1—y<z<y<az<i

Furthermore, the error terms are equal as well:

1 1—xz\dzx

2 _ 2 _

S2h(s) = (20)2h(2t) + / (1_@2}[(%_3) -
L<a<d

5 1 1l—z—y\drdy
5 // (l_x)2h< T, );g
t t
T-r<y<z<i

= /// g —1x)2H

1—p<z<y<z<i

(
_é /// (1—1x)2H<1_Cf:i_z)d;C;yiz‘

1 1 t
7 T Y<z<y<z<]

L=y zydedyds

%—:c Ty z
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Proof. By equatlons . . it’s enough to check that for constant 7 < s <4 and w = 2% we have

=) S5 % s

Vw<p<z b <q<p<z
2 w 1 w Y
_z S(A+ 77) - 5<A+ ,f) 0 .
S ) T3, > w5 ) + O oo
<r<g<p<z <r<g<p<z

q—

We have the easy inequality z > w > 33/, and for /w < p < z we have % > 2 > Y7

5
well as p <%> > f—f > y. Thus if n is a number below y which is counted by either side, then

every prime factor of n must be at least /7, and Q(n) must be an even number strictly below
rnax( ,14+5)=6.

We need to estimate the number of ns below y which contribute more to the left and side than
the right hand side. Since the number of nonsquarefree ns which can contribute to either side is at
most 3y6/ 7. we can assume without loss that n is square free. If n = pq with p > ¢ primes, we must
have z > p in order for n to contribute more to the left side than the right side. The number of
such n is at most 22 < y*7, so we may assume without loss that n has four distinct prime factors
p > q >r > s, at least one of which is below z (so n isn’t counted on the left hand side at all).

First consider the case s > y/w. Since n < wzQ, we have z > ¢. Then if n has 3 < k < 4 prime
factors below z, n is counted on the right hand side with multiplicity 1 — k+ . (g) — % -0— % . (’;) =
(1-k)(1- 7) (1- 7) =0, so we get the same contrlbutlon to both sides.

Now suppose that s < /w,rs > w. Since n < wz? , we have z > ¢. Then if n has 3 < k; < 4 prime
factors below z, n is counted on the right hand side With multiplicity 0— (k—l)—i—% ( ) 3 2.0— % . (g) =
(1-k)(1- 7) (1- 7) = 0, as before.

Next suppose that w > rs and p > z. We must have z > ¢ > % in order to get any Contribution
from n. Then n is counted on the right hand side with multiplicity 0 — 1 + % 2—-5-1-5-0=0,
so we get the same contribution from both sides.

Thus any bad n must have z > p > ¢ and w > rs, r > s > y*/7. The number of such n is at

most O (1og< J Toa(7) logu(w>> =0 <ﬁ) -

4. NUMERICAL RESULTS WHEN Kk = %

When x = ;’, we have a? = 3.9114..., 2 = 3.11582... [1]. In particular, we have a? < B8P +1, so
Corollary (1| can be applied to s in the range a? < s < B3P 41 with t =

ﬁ . The improvement to
the value of F(s) in this range is nonzero, but very small. Combining thls with ordinary Buchstab
iteration for the lower bound, one can show that B(%) < 3 11570.

If we apply the iteration from Corollary directly to FP, fP, then the values of s, ¢ for which the
quantity s f,.(s) is improved the most are given by s ~ 4.85,t ~ 5.52. This results in the bound
B(3) < 3.11554.

Iteratively combining the improvements from Corollaries [1| and [2, we get (3 (%) < 3.11549.

5. AN INFINITE SEQUENCE OF ITERATION RULES

Here we will describe an infinite sequence of iteration rules, one for each k > 1, generalizing the
upper and lower bound iteration rules described so far (which correspond to the cases k = 1 and
k =2). We will also prove an optimality result for these iteration rules.

7



Theorem 5. If k> 1 and w < 2*, then

(—1)k_1S(A, Z) < (—1)k_18(14,w1/k) + (_l)k—Q Z S(Am, (ﬂ)l/(k’_l)) + -

p1
wl/k<pi1<z

+ Z S(Apl"'pk—l’ ﬁ)

1/2
w
(pil“'pk—2) <pr—1<--<p1<z

_ (1 _ (’CT}&Q Z S(Ap1~~-pk’ ﬁ)

- <
PLpp_g SPE< T <p1<z

Z (1_#{i§k+1‘w]9i§p1"'pk+1}

(*3%)

+ )S(Am.,.pkH, ).

w
P1Pk—1

prr1<-<p1<z

Proof. It’s enough to prove this when A has just one element, say A = {a}. We may also assume
that a is squarefree, and write a = q1q2 - - - ¢ With ¢ < g2 < --- < ¢y, and the g;s prime. We may
assume also that q; < z, since otherwise the result is trivial. Thus we just need to prove that the
right hand side is at least 0.

Note that every nonzero summand corresponds to some divisor d = p; - - - p; of a having j prime
factors, 7 < k4 1. Our strategy is to combine the nonzero summands into small groups according
to the combinatorial structure of their prime factors, such that each group of summands has a
nonnegative sum.

The first step is to combine the summand corresponding to d = p;---p; with 7 < k —1 and
pj = q1 with the summand corresponding to d/p;, and to note that these two summands exactly
cancel each other out. After this step, the only summands that remain are those which have
d=py---pj with j >k —1and py_1 > q1.

The next step is to group the summands corresponding to d = p1 ---p; with j > k-1, pp_1 = q
with [ > 1, and p;---pr_1 taking some fixed value P with w < Pq;. If [ = 2, then the total

contribution from such d is 5. If I = 3, then the total contribution from such d is

(*3)

1_<1_ 1 >‘2+ (1_#{10 € {p1,pr1,q2,q1} | wp < PQ2q1}> _ #i<k—1|wpi < Peqi}

(*3?) ("3‘52) (k:;—?)

If [ = 4, then the total contribution from such d is at least

17<17@>-3+(1—(’z?)).3:

Finally, if [ > 5 then the total contribution from such d is easily seen to be positive.

In order to balance out the negative contribution coming from groups corresponding to P =
P1 o Pre—1,w < Pqi,pr_1 = q with [ = 3, we will assign portions of the positive excess from groups
corresponding to Ps with [ = 2 or [ = 4 to certain corresponding Ps with | = 3.

If P=p-pr_1,w < Pqgi,pp_1 = q with [ = 2 and m > 3 is minimal such that ¢,, does

not divide P, then we group the excess ﬁ contribution from this P with the contributions
2
corresponding to P’ = Pgq,,/q2 - note that the least prime factor of P’ is then necessarily equal to

q3-
8



kl)

J— J— 1 J— ( g 1 3
... 7 , , la)
IfP=p - pp_1,w < Pqi,pr_1 = q with [ = 4, then we take %) of the excess contribution
2

from this P, and divide it into k& — 2 pieces of sizes (kiQ), (k?LQ) s eees (],2:22) , and we assign the piece of
2 2

i 2
size ﬁ to P/ = Pg3/pi+1 (noting once again that P/ has least prime factor equal to ¢3).

2
To finish the argument, we just have to show that for P = py---pr_1,w < Pq,pr_1 = q; with
I = 3, the total excess contribution that was assigned to P by the process described in the last two
paragraphs is at least

#{i <k—1|wpi < Pgoqi}
(k+2) :

2
To see this, let m > 4 be minimal such that g,, does not divide P (or let m = k + 2 if Pgaq1 = a).
For any 3 < j < m, if we let P]' = Pgq>/qj, then the least prime factor of PJ{ is g2, and as long

as wqg; < Pgaq1 we have w < P]fql and the excess of @ corresponding to P]f is assigned to P.

Additionally (in the case m < k + 2) we let P’ = Pgq,,/qs, and we see that the least prime factor
of P’ is q4, that w < Pq; < P'qy, and that ££25™ of the excess corresponding to P’ is assigned to

2
P. Together, we see that the amount of excess which was assigned to P is at least
#{3<j<m|wg <Ppa} k+2-m _ #{i<k—1]wp < Pgpq}
k+2 k+2 = k+2 :
(*27) ("2 (*2)

To see that the kth iteration rule is optimal when we set kK = 1, w = Z%, and y = 2z° with

O

k+ % < s < k+2, we argue as in Theorem |4] to see that we just need to prove the following bound.

Theorem 6. If AT are weighted sets of integers between 1 and y defined as in the discussion before
Theorem then for any k > 1, if y = z° with k + % <s<k+2andw= Z%, we have

(_1)]6718(147]“_17 Z) — (_1)]{‘718(14716_1’101/]6) + (_1)]’»‘*2 Z 5(/1;1k_27 (ﬂ)l/(kfl)) + ..

p1
wl/k<pi1<z

+ Z S(Al—rl"'pk—ﬁ pl---lgto}k,l)

w 1/2
(pl.A.pk_Q) SPp—1<<p1<z

— (l — ﬁ) . Z S(Azjl"'pk’ p1--$k71)

2
<pp<--<p1<z

P1-Pk—1

4 Z (1_#{z§k+1|wp2§]91pk+1}>S(A+ w )

(k;rg) P1Pk+17 p1--Pr—1

w
<
P1-Prk—1 SPrb1< T SP1I<Z

ieaa)

Proof. Suppose that a < y is counted a different number of times on both sides of the above. Then
we necessarily have A(a) = (—1)¥, and the least prime dividing a is less than z. In order for the
contribution of a to the right hand side to be positive, there must be primes p; > --- > pr_1

dividing a such that p; < z and such that the least prime dividing a is at least pl_f;k_l, SO we

conclude that any prime dividing a must be at least
w w y 87(k+1)
> — =2z > z.
P1 Pk—1 Zk_l Zk-‘r]_ f

In particular, the number of such a which have a square factor is O(%), SO we may assume without

loss that a is square free. If a has at least k£ + 4 prime factors, then since a has some collection of
9



k prime factors whose product is at least w we have a > w\/E4 = y, a contradiction. Thus a has
strictly less than k 4 4 prime factors, and since A\(a) = (—1)* we see that a has either k or k 4 2
prime factors.

If a has exactly k prime factors, then they must all be less than z in order for the contribution
of a to the right hand side to be positive, so a < z* < Z?%, so the number of such a is at most Za%
Thus we may assume without loss that a has exactly k + 2 prime factors, at least k of which are
less than z.

If two of the prime factors of a are > z, then the remaining prime factors of a must have product
at least w, so a > wz? = vy, a contradiction. If one of the prime factors of a is > z and the
remaining k 4+ 1 prime factors of a are all < z, then the total contribution of a to the right hand
side is precisely 0. Thus, we may assume that all of the prime factors of a are less than z.

If every product of k prime factors of a is > w, then the contribution of @ is again precisely
0. Otherwise, we can write a = q1 -+ qgao With /2 < q1 < -+ < Qrao, @1 @ < W, Qy1 < 2,
and grio < z. Using an upper bound sieve to bound the number of possible values for q; - - - g; by

O(%), we see that the number of such a is O(%) = O(ﬁ). O
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