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Clone-minimal algebras

> A reduct of A is an algebra with the same underlying set as A
and basic operations a subset of the terms of A. A reduct of
A is proper if it is not term equivalent to A, and nontrivial if
at least one operation is not a projection.

> An algebra A will be called clone-minimal if it has no
nontrivial proper reduct.

» Proposition
Every nontrivial finite algebra A has a reduct which is
clone-minimal. Any clone-minimal algebra A generates a variety in
which all nontrivial members are clone-minimal.



Clone-minimal algebras which are Taylor

Theorem (Z.)

Suppose A is a finite algebra which is both clone-minimal and
Taylor. Then one of the following is true:

1. A is the idempotent reduct of a vector space over F, for some
prime p,
2. A is a minimal majority algebra, or

3. A is a minimal spiral.



Spirals

» Definition
An algebra A = (A, f) is a spiral if f is binary, idempotent,
commutative, and for any a, b € A either {a, b} is a two element
subalgebra of A, or Sg,{a, b} has a surjective map to the free
semilattice on two generators.
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Spirals

» Definition
An algebra A = (A, f) is a spiral if f is binary, idempotent,
commutative, and for any a, b € A either {a, b} is a two element
subalgebra of A, or Sg,{a, b} has a surjective map to the free
semilattice on two generators.

> If A is a spiral of size at least three and A = Sg, {a, b}, then
setting S = A\ {a, b} the definition implies that S
binary-absorbs A and f(a, b) € S.

» Any 2-semilattice is a minimal spiral.



My first spiral

Figure : A minimal spiral which is not a 2-semilattice.
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Proving the classification theorem

> Let A be a finite clone-minimal algebra which is also Taylor.

» Step 0: A is idempotent, since otherwise A has a nontrivial
unary term ¢, which generates a nontrivial non-Taylor clone.

» Step 1: Suppose there is some B € HSP(A) which has a
Mal'cev term m, that is, a term satisfying
mB(x,y,y) = m®(y,y,x) = x for all x,y € B.

» Then m(x,y,y) ~ m(y,y,x) = x in the variety generated by
A: if not, then m(x,y,y) or m(y,y,x) would generate a
nontrivial proper reduct.
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Proving the classification theorem: Mal'cev case
» Suppose that f, g are two n-ary terms of A with
FB(XL, ooy Xn) = 82(X1, ovy Xn)

for all x1,...,x, € B.

» Then we must have

m(.y7 f(X].? "'7Xn)7g(X17 ...’Xn)) ~ y

in the variety generated by A, since otherwise the left hand
side generates a nontrivial proper reduct.

» Thus we have
g=m(f,f,.g)~=f,

so A and B generate the same variety. In particular, if B is the
idempotent reduct of a vector space over Iy, then so is A.



Proving the classification theorem: bounded width case

» Step 2: Now suppose there is no affine B € HSP(A).



Proving the classification theorem: bounded width case
» Step 2: Now suppose there is no affine B € HSP(A).

» Theorem (Larose, Valeriote, Zadori; Bulatov; Barto, Kozik)

If A is a finite idempotent algebra such that there is no affine
B € HS(A), then A has bounded width.



Proving the classification theorem: bounded width case
» Step 2: Now suppose there is no affine B € HSP(A).

» Theorem (Larose, Valeriote, Zadori; Bulatov; Barto, Kozik)

If A is a finite idempotent algebra such that there is no affine
B € HS(A), then A has bounded width.

» Theorem (Jovanovi¢, Markovi¢, McKenzie, Moore)

If A is a finite idempotent algebra of bounded width, then A has
terms f3, g satisfying the identities

f3(x,y,y) = (x,x,y) = 3(x, y,x)
~ g(x,x,y) =~ g(x,y,x) =~ g(y, x, x).
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» Theorem (Z.)

If A is a finite idempotent algebra of bounded width, then A has
terms f, g satisfying the identities
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Proving the classification theorem: bounded width case

» Theorem (Z.)

If A is a finite idempotent algebra of bounded width, then A has
terms f, g satisfying the identities

f(x,y) = f(f(x,y), f(y,x))
~ g(x, x,y) = g(x,y,x) ~ g(y, x, x).

» Take terms f31,g1 from the previous theorem. Define f3’,gi by

£ (x,y,2) = fi(f(x,y,2), 3y, 2, x), (2, %, ¥)),
gi+1(X7y7z) = gi(f?)(xayaz)7 fé(yazax)a f3(z7X7}’))7

and choose N > 1 such that f3N R f32N. Then take g = g".
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Proving the classification theorem: bounded width case
» From the equations
f(x,y) = f(f(x,y), f(y,x))
~ g(x x,y) = g(x,y,x) = gy, x,x),
we see that for any a, b € A, either f(a, b) = f(b, a) or
{f(a, b),f(b,a)} is a majority subalgebra of A.

» If f is a projection, it must be first projection, and in this case
g is a majority operation on A.

» Otherwise, f is nontrivial. If there was any majority algebra
B € HSP(A), then f® would be a projection.

» Thus, if A is not a majority algebra, then there is no majority
algebra B € HSP(A), and so we must have

f(x,y) = f(y, x).
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Proving the classification theorem: spiral case

» Step 3: Now we assume that A = (A, f) with f binary,
idempotent, and commutative, such that A has bounded
width.

» By clone-minimality, if (a, a) € Sga2{(a, b), (b, a)}, then we
must have f(a, b) = f(b,a) = a and {a, b} is a semilattice.

» We want to show that A has a two-element semilattice
subalgebra.



Proving there is a semilattice subalgebra
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and suppose that A has no proper subalgebras. If
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Proving there is a semilattice subalgebra

» Lemma
Suppose that A = (A, f) with f binary, idempotent, commutative,
and suppose that A has no proper subalgebras. If
(a,a) & Sga2{(a, b),(b,a)} for all a# b e A, then A is affine.

» Let R =Sgy2{(a, b),(b,a)}. If R had any forks, then we'd
get either (a,a) € R or (b, b) € R, so R is the graph of an
isomorphism ¢, p,.

» Since (f(a, b),f(a, b)) € R, 15 fixes f(a, b).

» Aut(A) is transitive, no nonidentity element of Aut(A) fixes
more than one point, and Va, b € A there is ¢, , € Aut(A) of
order two which swaps a, b and has one fixed point.

» So Aut(A) is a Frobenius group, and the Frobenius
complement is an odd order abelian group.



Semilattice lteration Lemma

» Lemma (Bulatov)

Let t be a binary idempotent term of a finite algebra. Then there
exists a nontrivially defined binary term s € Clo(t) which satisfies
the identities

s(x,s(x, ¥)) = s(s(x,y), x) = s(x, y).
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Semilattice lteration Lemma

» Lemma (Bulatov)

Let t be a binary idempotent term of a finite algebra. Then there
exists a nontrivially defined binary term s € Clo(t) which satisfies
the identities

s(x,s(x,y)) = s(s(x,y), x) = s(x, y)-
» For any term t, let t! = t and t"+1(x,y) = t(x, t'(x,y)). Set
oo} o n!
t*(x,y) = n||_>moo t"(x,y).

» Define u(x, y) by

u(x,y) = t=(x, t>(y, x)).

» Now take s(x,y) = u™(x,y).



Theorem of the cube

» Suppose that s satisfies the identities

s(x;s(x,y)) = s(s(x, ), x) = s(x, y).

Define a directed graph with an edge from a to b whenever
s(a, b) = b. Note that there is an edge from a to b if and
only if {a, b} is closed under s, and s acts like the semilattice
operation directed from a to b on {a, b}.
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Theorem of the cube

» Suppose that s satisfies the identities

s(x;s(x,y)) = s(s(x, ), x) = s(x, y).

Define a directed graph with an edge from a to b whenever
s(a, b) = b. Note that there is an edge from a to b if and
only if {a, b} is closed under s, and s acts like the semilattice
operation directed from a to b on {a, b}.

» Theorem (Bulatov)

If RC Ax B x C is closed under s, A, B, C are finite and strongly
connected, and T 2R = AX B,m3R=Ax C,m3R=BxC(,
then R=Ax B x C.

» The proof is a generalization of the 2-semilattice case.
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Back to classification theorem (spiral case)

> Recall A = (A, f) is a clone-minimal algebra of bounded
width, and f is idempotent and commutative.

» Apply semilattice iteration lemma to f to get s satisfying

s(x,s(x,y)) = s(s(x,y), x) = s(x, y).

Since A has a two element semilattice subalgebra, s is
nontrivial, so £ € Clo(s).

» Define a directed graph G, on A where edges correspond to
two element semilattice subalgebras.

» For any a, b, either s(a, b) = a or (a,s(a, b)) € G.
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Proving the classification theorem: spiral case

» Since f € Clo(s) and x — s(x,y), there is either a directed
path from x to f(x,y) or a directed path from y to f(x,y).
Since f(x,y) = f(y, x), both directed paths exist.

» So Gy is connected. Moreover, for every algebra B € HSP(A),
O has a unique maximal strongly connected component Sg,
and Sg is a binary absorbing subalgebra of B.

» Let p(x,y) be in the maximal strongly connected component
of the free algebra on two generators. Since f € Clo(p),
f(a, b) is in the maximal strongly connected component of
Sg{a, b} for any a, b.
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» Now assume A = Sg,{a, b} with |A| > 2, and let S be the
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» Lemma
In this case, SN {a, b} =0, so A has a surjective map to the free
semilattice on two generators.

» We'll prove this using the Absorption Theorem.
Theorem (Barto, Kozik)

Suppose A, B are finite algebras in a Taylor variety and R is a
linked subdirect product of A and B. Then either R = A x B or
one of A, B has a proper absorbing subalgebra.



Proving the classification theorem: spiral case

» Now assume A = Sg,{a, b} with |A| > 2, and let S be the

maximal strongly connected component of G4, so
A=SU{a, b}.

» Lemma
In this case, SN {a, b} =0, so A has a surjective map to the free
semilattice on two generators.

» We'll prove this using the Absorption Theorem.
Theorem (Barto, Kozik)

Suppose A, B are finite algebras in a Taylor variety and R is a
linked subdirect product of A and B. Then either R = A x B or
one of A, B has a proper absorbing subalgebra.
» A strongly connected algebra has no proper absorbing
subalgebras.
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Wrapping up the spiral case

» Case 1: Suppose {a, b} C S.

» Since every quotient of A is strongly connected, we may
assume A is simple.

» Let R =Sg,2{(a, b),(b,a)}. If Ris linked, then by the
Absorption Theorem we have R = A x A, so (b, b) € R.

» If R is not linked, R must be the graph of an isomorphism
which swaps a and b. Now consider

B = Sgy3{(a, a, b),(a, b, a), (b, a,a)}.

Have 7; ;B = A x A for all i, j, so B = A3 by the theorem of
the cube. If m witnesses the fact that (b, b, b) € B, then m
restricts to a minority operation on {a, b}.
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Wrapping up the spiral case
» Case 2: Suppose a ¢ S but b e S.

» May assume that no nontrivial congruence of S extends to a
nontrivial congruence of A.

» Let R = Sg,2{(a, b),(b,a)} N S2. Our assumption implies R
must either be linked or the graph of an automorphism of S.

» If R linked, then by the Absorption Theorem have (b, b) € R.

» Otherwise, R is the graph of an automorphism +: S — S. For
any x € S, have

(f(a,x), f(b,u(x))) € R,
(F(e(b), x), f(b,(x))) € R,

so we must have f(a, x) = f(¢«(b), x) for all x € S. But then b
and ¢(b) generate S.
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Converse directions

» Proposition
Every nontrivial idempotent reduct of a vector space over a finite
field has a Mal’cev term.

» Proposition
Every operation in a majority algebra is either a projection or a
near-unanimity operation. In particular, every nontrivial reduct of a
majority algebra has a majority term.

» Proposition
Every nontrivial reduct of a finite spiral is a bounded width algebra
having no majority subalgebras. In particular, every nontrivial
reduct of a finite spiral has a spiral term.



Thank you for your attention.



