Notes on the sum product theorem
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1 The Plunnecke-Ruzsa sumset calculus

Definition 1. If A, B are finite subsets of a semigroup G, A nonempty, define the magnification
ratio of A, B to be

| XB]
A, B) = .
(A, B) o238, Tx]

Note that if ) # X C A has 521 = (A, B) then B2 = u(X, B).
Theorem 1 (Petridis). If X, B are finite subsets of a semigroup G, X nonempty satisfying %(—Bﬂ =
w(X, B), then for all finite subsets C' of G such that |cX| = |X]| for all c € C, we have

|CX|| X B|

ICXB| <
| X]

Proof. Induct on |C|. If C is empty we are done, so suppose C = C' U {c}, ¢ ¢ C'. Letting
Y ={z€ X |cxeC'X}, we have

ICXB| < |C'XB| + |c(XB\ YB)
IC"X||X B

< +|XB| - |YB
| X
CX|—|X|+1|Y|)|XB
_[CX||IXB -
| X]



Theorem 2 (Ruzsa triangle inequality). If X, Y, Z are finite subsets of a group G, then | X||Y Z| <
Y X~ Y|XZ|.

Theorem 3 (Ruzsa covering lemma). If A, B are finite subsets of a group G and A is nonempty,
then there is a set S C B with |S| < u(A, B) and B C A71AS.

Proof. Let ) # X C A be such that )‘(TE';' = (A, B). Take S to be a maximal subset of B such

that Xs, Xs" are disjoint for every pair of distinct elements s, s’ € S. Then | X||S| = |XS| < | X B|
and BC X 'X5C ATAS. O

Lemma 1 (Pliinnecke tensor power trick). If A, B are finite subsets of a semigroup G, A', B" are
finite subsets of a semigroup G', and A, A’ are nonempty, then

w(Ax A',Bx B') = u(A,B)u(A', B)).

Theorem 4 (Plinnecke-Ruzsa sumset inequality). If A, By, ..., By are finite subsets of an abelian
semigroup G with A nonempty, such that for allb € (h —1)(B1U---U By,) we have |A + b| = | 4],

then

|A] A

+Bi| |A+ By |
A Al

w(A, By + -+ Bp) <

In particular, if A is cancellative we have |By + - -+ + Bp| < A

Proof. Write «o; = |A‘J;fi|. Choose a large integer n such that O% is an integer for all i, and set
n; = 0% By adding copies of N to G, we can assume there exist 77, ..., 7y, C G with |T;| = n; such
that all sums

y+ti At YyEA+ B4+ By, VI<i<h t; €T

are distinct. Set B = |J,;(B; + T;). We have

|A+ Bl <Y |A+ BT =) nicul Al

RO

so u(A, B) <. njo; = hn. Let ) # X C A be such that X+B| _ w(A, B). Applying Theorem
h times, we see that | X + hB| < u(A, B)" X| < (hn)"|X|. Thus,

nl-“nh‘X—i—Bl—‘r"'—i—Bh‘Z‘X—I—Bl-l-"'-i-Bh—i-Tl—i--”—i-Th’S‘X—l—hB‘S(hn)h’X’,

SO (hn)h

7 = phag .
nl...nh

(A, By + -4 By) <
Applying the tensor power trick (Lemma (1)), we have
(A, By + -+ By)¥ = pu(xPA, xFBy + -+ xFBy) < htaf - af,
and taking k to infinity finishes the proof. O

Proposition 1 (Bourgain). Let Ay, ..., Ap, B1, ..., By, C1, ..., Cp, be finite subsets of an abelian group
G such that for each i A; N C; is nonempty. Then

[BL+Chl  |Bn+ Chl

Bi+--+ Byl <
Bute Bl = e A Ao

|AL + -+ + Apl.



1.1 Approximate variants

Lemma 2. If A, B are finite subsets of an abelian group G, then there existx € B— A,y € A+ B
such that

|A|| B
|A+ B’
|Al| B
|A+ Bl

|IBN(A+2x)| >

BA(-A+y)| >
Proof. By Cauchy-Schwarz, we have

#{(a,b,a',b')€A><B><A><B|a—|—b:a’+b’}>m.
~ |A+ B|

By the pigeonhole principle we can find an x of the form b — ¢’ and a y of the form a + b with the
required properties. O

Theorem 5 (Approximate covering lemma). If A, B are finite subsets of an abelian group G with
A nonempty, then for any m > 1 there are sets Sy C B— A, S_ C A+ B such that

BN (A+S,)
IBA(—A+S_)

| > (1—-1/m)|B|,
| > (1—1/m)|B|,
and

141, 15| < log(m)u(A, B) + 1.

Proof. Assume WLOG that u(A, B) = |A|;‘B|. Iteratively apply Lemma [2| and use the inequality

|A] |A]

Theorem 6 (Approximate Pliinnecke-Ruzsa). If A, By, ..., By, are finite subsets of an abelian semi-
group G with A nonempty, such that for allb € (h—1)(B1U---U By) we have |A+ b| = |A|, then
for any m > 1 there is a set X C A with

[ X| > (1= 1/m)|A]

and
hmh=t —1|A+ By| |A+ By

h—1 |A] Al
Proof. We’ll show that in fact we can find such X with

hmh=1 -1 |A+ By| |A+ By
X+Bi+ - +By < [mMX]—-[mh-——— =114 .
Bt h'—(m' | (m h—1 )‘ ') A ]

| X +B1+-- 4+ Byl < | X|.

Suppose for contradiction that there is some m > 1 for which we can not find such an X. Let n be
the infimum of all such m. Since A only has finitely many subsets, we can find a set ) #Y C A
with |Y| > (1 —1/n)|A| and

_hnh1_1> ’A|> ’A+B1‘ ‘A—FBh‘

Y+ B4+ By <[ n"Y|=(n"
¥t Byt h'—<”" <” hol A A



Note that if |Y| > (1 —1/n)|A| then the derivative of the right hand side of the above with respect
to n is positive, so by the definition of n we must have |Y| = (1 — 1/n)|A| for any set Y as above.
By the Pliinnecke-Ruzsa inequality (Theorem , we have

_JA4BI A+ B _ A+ Bl |A+ Byl
SNy vyl ST Al Al

so there is some () # X’ C A\ 'Y such that

p(AN\Y, By + -+ By)

+Bi|  |A+ By
4] Al

A
|X’+Bl+~-+Bh|§nh| 1 X[.

Taking Y/ =Y U X', we have

Y'+ B+ + By <Y+ Bi+ -+ By| + | X'+ By +--- + By

hn=1 -1 |A+ By| |A+ By
< (h myry  (on =1 1 h
—le“””X' GL h i >M0 A A

hnt—1 —1 |A+ By |A + Byl
hy! h 1 h
— Y| — N I

<n ¥ <n h=1 >| ‘> |A] Al

but [Y'] > (1 —1/n)|A|, a contradiction. O

Theorem 7 (Ruzsa). If A, B,C are finite subsets of a semigroup G with A nonempty, such that
for any b € B,c € C we have |cA| = |Ab| = |A|, then for any m > 1 there is a set X C A with

[ X] > (1=1/m)|A]
and
|CA||AB]|
Al 4]
Proof. Since left multiplication by C' commutes with right multiplication by B, we can make an

auxiliary abelian semigroup G’ out of disjoint copies of A, B,C,CA, AB,B x C,CAB,{0} in an
obvious way. Now apply Theorem |§| to G'. O

ICXB| < (2m — 1) X].

1.2 Energy
Definition 2. If A, B are finite subsets of a semigroup, define their energy to be
E(A,B) = #{(a,b,c,d) € Ax Bx Ax B|ab=cd}.
When A = B, we abbreviate this by E(A).
Proposition 2 (Cauchy-Schwarz). If A, B are finite nonempty subsets of a semigroup, then

AP BI”
> .

Definition 3. If A, B are finite subsets of an abelian group G and = € G, set

(Ax B)(z) = #{(a,b) e Ax B|a+b=zx},
(Ao B)(z) =#{(a,b) e Ax B|b—a=ux}.



Lemma 3 (Sanders, Schoen). If A is a finite nonempty subset of an abelian group, 0 < o < 1, and

¢ >0, then there is a set X C A with | X| > o2

A2 and

#{(m,y) € X x X | (Ao A)w —y) >C]igﬁ)} > (1_ 1fa>pq2.

Proof. We will choose X = AN (A+ d) for some d € A — A. We have

> e <oy Yo A = a(a)

(AoA)(d)<a iy d

> (Ao A)(d)? > (1 — a)E(A).

(Ao A)(d)>a LA

|A|2
Setting
S = {(a,b) EAXA|(AoA)(a—-0) < Ci‘(lé)}’
we have
E(A)
Y #{(ab)eS|abeA+dy= Y (AoA)a—b)<c "z 18] < cE(4).
d (a,b)es 4]
Thus

> (1—a)#{(a,b) € S|a,bc A+d} —c(AoA)(d)? <0,

(AoA)(d)>a ’if\“;)

E(A)
[A[2

so there must be some d with (Ao A)(d) > « and

(1—a)#{(a,b) € S|a,bc A+d} —c(AoA)(d)?* <0.
Taking X = AN (A + d) for this d, we have |X| = (Ao A)(d) and

E(A)
“lap

#{(ﬂz,y)EXxX|(AoA)(x—y)> }:|X|2—#{(a,b)65|a,b€A+d}. O
Theorem 8 (Balog, Gowers, Schoen, Szemerédi). If A is a finite nonempty subset of an abelian

group, then there is a set A" C A with |A’| > gﬁg

and

‘ |10

A — Al <4 .
| | < 86E(A)3

Proof. Take o =, ¢ =% in Lemmato find a set X C A with | X| > 5%‘3 and

#{(x,y) EXXX|(AoA)(x—y) > QE\ELIITQ)} > g|X!2.




Make a graph H with vertex set X, having an edge between x and y exactly when (Ao A)(z —

y) > flf‘(l‘?' Letting A’ be the set of vertices in H having degree greater than %]X |, we see that

—

|A'| > %' > %. For any a,b € A’, we can find more than %|X| vertices x € X connected to both

a,b in H, and for each such z we can write
a—b=(a—2x)—(b—ux),

and we can write the right hand side in the form (ay — a2) — (a3 — a4) with aj,a9,a3,a4 € A,

2
a1 —as = a — x, in at least % different ways. Thus we have

1 E(A)?

A — A 21X - Al
SO |A|10
A —Al<4 . O
| TPV

2 The sum-product theorem

2.1 Characteristic Zero

Definition 4. For any distinct points a,b € R™, set

T T
= n < — < — .
D(a,b) {pER | Zpab < G,Zpba < 6}
Lemma 4. For any four points a,b,c,d € R™ with a # b,c # d,{a,b} # {c,d}, if all of the
inequalities
|lab| < [bel, [ab| < [bd], [cd| < lad]|, |cd| < [bd]|

hold then the interiors of D(a,b) and D(c,d) do not intersect.

Proof. 1f |ab| + |ed| < |bd|, then since D(a, b) is contained in the sphere of radius |ab| around b and
D(c,d) is contained in the sphere of radius |cd| around d, their interiors can’t intersect. Otherwise,
we can find a point z € R"™ such that |bxz| = |ab|, |dz| = |cd|. Since |abl, |cd| are assumed to be at
most |bd|, bd is the longest edge of triangle bdx, so we must have Zbxd > 5. Thus we can find some
point m on the line segment bd with Z/mxb > § and Zmxd > %. Since a is outside the sphere of
radius |ed| = |dz| centered at d, we have Zabm > Zxbm, and similarly Zedm > Zxzdm. Thus, if
we rotate the ray maz around the line bd we get a cone which separates the interior of D(a,b) from
the interior of D(c,d). O

Corollary 1 (Gilbert, Pollak). Let P be a finite set of points in R™, and let T be a minimum
spanning tree on P. For any distinct edges {a,b},{c,d} of T, the interiors of D(a,b) and D(c,d)
do not intersect.

Proof. Since T is a tree, there is a unique path in 7" connecting the edge {a, b} to the edge {c,d}.
We may assume without loss of generality that this path connects a to ¢ without passing through
b or d. Then if we replace edge {a,b} with either {b, c} or {b,d} we again get a spanning tree, so
by minimality we must have |ab| < |bc|, |bd|. Similarly we have |cd| < |ad], |bd|. Now apply Lemma
4 O



Proposition 3. Suppose a,b,c,d € H* are nonzero quaternions with Zb0d < &. Then (a + c)(b+
d)~1 is in the interior of D(ab™', cd™1).

Proof. Writing b = md, we have
(a+c)b+d)t=(a+e)d i m+ D) t=abt +(cdt —ab H(m+1)7L,

so it’s enough to check that if Zm01 < Z then (m + 1)~! is in the interior of D(0,1). Since

Z(m+1)10 > 2% we have Z1(m +1)7'0 > 2 so (m + 1)~! is in the interior of D(0,1) by the

fact that the angles of a triangle sum to . O

SE]

Theorem 9 (Konyagin, Rudnev, Solymosi). Suppose A C H* is a finite set of nonzero quaternions
such that for any a,b € A we have Za0b < ¢. Then

A" — Al A4

AA|? ’
gk +9

|A + A]?|AA| >

where v is the Fuler-Mascheroni constant.
Proof. By Cauchy-Schwarz, we have

4
#{(a,b,c,d)EAXAXAXA]ab:cd}Zm.

Write m(z) = #{(a,c) € Ax A | cta =z}, n(z) = #{(b,d) € Ax A|db~! = z}. By Cauchy-

Schwarz again, we have

2 1AP

D om@ Yot 2 (Em@n@) = oo

Thus we may assume without loss of generality that
4
2 14l
>

since otherwise we may replace A by A. Choose a numbering z1, ..., x| a4-1) of the elements of AATL
such that n(xr1) > n(zz) > ---. Choose 1 < k < |AA™!| such that (k — 1)n(zg)? is maximized.
Then by choice of k we have

|A’4 |AA~Y| |AA—L

A S 2 ) AL (k= Do’ Y 1_11’

i=1 =2

SO 4
s o |Al — |4]|A4)

k—1n(x ,
(e = Tinfaw)” 2 Hjga-11-1]AA]

where H, = > 1" | % denotes the nth harmonic number. Note that by the Ruzsa triangle inequality

2
We have [AA™!| < "?ﬁ" , SO

|AA]”
A

Hgp-1-1 < log +7.



Let T' be a minimum spanning tree on {z1,...,zx}. For any edge {z;,z;} in T, if a,b,c,d € A have
ab~! = z; and ¢d~! = x;, then by Proposition [3| the ratio (a + ¢)(b+d)~! will be in the interior of
D(ab=!,cd=1). Thus by Corollary [1| we have an injection

{({zi,z;},a,b,c,d) €T x Ax Ax Ax Alab™! = xj,ed™t =2;} — (A+ A) x (A+ A),

taking ({z;,2;},a,b,¢,d) to (a+¢,b+d). Since T has k —1 edges and n(x;) > n(xy) for 1 <i <k,
we have \A|4 |A||AA|
A+ AP2> (k-1 2 L el O
’ + | - ( )Tl(xk) - H‘AA—l‘_1|AA’

2.2 Finite fields
Lemma 5. If A,B CF,, G CF, then there is some £ € G with

[AllBIG]

A+¢B| > NWPHET
ATl = BT+ 1]

Proof. Define a function f: G — N by
f(&) =#{(a,b,a’,b') e Ax Bx Ax Bla+& =d +&b'}.

We have
> (& <|AP|BP +A]|Bl|G],
e

so there must be some & € G with f(§) < ‘ATCL’FP

+ |A||B|. By Cauchy-Schwarz, we have

[AP[BE _ [AIBIIG|
f&) — IAlBI+ 1G]

Theorem 10 (Bourgain, Garaev, Katz, Li, Shen, ...). If p is prime and A CF,, then

|A+¢B| >

14
|A+ AP°|AA > 1Al min (1 p) ,

256 AP
A|13 37p
st o AB
|A+ AI°|AA|I* > 523 Win <17 |A|2>'

Proof. We’ll prove the second bound (for the first bound, take X = A and Z = W =Y instead of
using the approximate variations on the sumset calculus). By the approximate Pliinnecke-Ruzsa
theorem (Theorem @, we can find X C A with |X| > 3|A| and

|A+ AP

X+A+A+A<24——
(X +A+A+Al< AP

X

By the Cauchy-Schwarz inequality, we have

X7 AP

AnXal > ——r—

rzeX,a€A



so by the pigeonhole principle there is some ag € A with

S 1XPIA|
|ltAN Xag| >
2 XA

Let X = {z1,...,7x|}, set n; = |[;4 N Xag|, and suppose WLOG that ny > -+ > n|x|. Choose k
maximizing the quantity k%/4ny, set Y = {z1,...,z}, and set N = ng. We have

XPIA] g s
XA <> ng <> i AR Ay < 4| XYY PN,
=1 =1
" X[7]Af*
Y[3N% >
¥l —zwmm4

For any y € Y we have |[yA N Xag| > N, so by Ruzsa’s triangle inequality (Theorem [2)) we have

lyA +yAN XaollyA N Xag + Xao| < ly(A+ A)|[(X + X)ag < |A+ Al?
YA N Xao| = N =TN

’yA—XCLO| S

and similarly by Pliinnecke-Ruzsa (Theorem {4]) we have

lyAN Xag + yA||lyAN Xag + Xao| < |A+ AJ?

A+ Xag| <
lyA + Xaol < lyA N Xag| - N

There are now two cases
Case 1: If = Y)\{O} Fp, then by Lemma |5 we can find § € F) such that [A + {A| >

s min(|A[?, p). Write £ = &4 d with a,b,c,d € Y. By Pliinnecke-Ruzsa, we have

[Xao + aA||Xao — bA|| Xao + eAl|Xao — dA|

- - < - - <
(@ — B)A + (c — d)A| < |aA — bA + cA — dA| X P

SO

AWXW“ p
A A8>’ 1, —
A+ AP > 2 " A2

Since |X|PN* > |YPN' > BEAL and [X| > 3[A], we have

8 4q4 > XITAL° p
|A+ AI°|AA] ZTmm 1, AR

374 P
> 1,2
= 923 A2

Y— .
Case 2: If = Y)\{O} # I, then we can find { € (W + ) \ e Y \{0} Writing & =
C;_b + 1 with a,b,c,d € Y, we see that for any Z,W C Y have

1ZIW| =12+ W[ <[(a=b)Z + (a =W + (¢ = )W].



In particular, if ) # Z’ C Z is chosen such that u((a—b)Z, (a—b)W+(c—d)W) = ‘(a_b)Z/Hal_Zb,)'WHC_d)Wl,

then by Pliinnecke-Ruzsa we have

Z+W||(a—b)Z+ (c—d)W|

ZNWI < [(a =82 + (0~ W + (e~ W] < = 7

1Z'],

SO
ZPPIW| < |A+ All(a —b)Z + (c — d)W|.

Applying the approximate covering lemma (Lemma [5) to aA N Xag, aY, we find a set S with
|S] < 3# such that
6
laY N (Xap + aS)| > ?\Y\

Let Y =Y N(a~'Xao + S). Applying it again, we find a set S’ with |S’| < 3# such that
!/ / 6 !
bY' N (~Xao +bS') > 2|V,

and let Z = Y' N (=b"1Xag + S). Similarly, find sets W C Y,S”, " such that |[W| > g—;|Y|,
W C Xag+ ¢S",dW C —Xag +dS", |9"],]5"| < 324 We have

[(a=b0)Z+ (c—d)W|<|aZ —bZ + cW — dWV|
< |SIIS"1S" 18" | X ao + Xao + Xao + Xag|
A+ A |A+ A3
< 31 - 24
<3 N4 |A|3

RY

SO
24| APIY P N4

S 1X[7]Ap

By the inequalities |X| > 3|A4| and |[Y[’N* > 256/ AAT We have

31X1°A[
25 .76

37|A’13

— 917, 76
’A|13

Z 223 °

|A+ ABJAA* >

Theorem 11 (Garaev). Let q be a prime power. If A,B CFy, C CFy, then

|A+ BJ||AC| > min <1qu ‘A|2‘B”C’>
pu— 2 .

I 4q

Proof. Let
J={(x,b,c,y) €(A+B)x BxC x AC' |z =b+yc '}.

10



We have an injection A x B x C' — J given by (a,b,c) — (a + b,b,c,ac), so |J| > |A||B||C|. Let
®0, ..., 9g—1 be the additive characters of Fy, ¢o the trivial character. We have

115 Y S Y et

n=0x€A+B beB ceC yc AC
!A+BHBHCHAC!

Z Y. onla
r€EA+B

)| D énld)

beB

D,

ceC

> dnlye™

1 yeAC

n=1

By Cauchy-Schwarz, for n # 0 we have

2 2
<ICIY | D daldy)

deF, | yeAC
= q|C||AC],

D

ceC

Z bn(ye !

ye AC

and applying Cauchy-Schwarz one more time we have

fZZ% S 6u(®)| | 3 bulue *WWZ

> Ga@)] | én(d)

421 (zéarn beB ceC | yeAC n=1|zcA+B beB
< \/glA+ BI[BI[CIIAC.
Thus
sy < EEEEICEEL, A BTECTACT m

A much better sum-product bound was recently obtained by Rudnev, using a three-dimensional
variant of the Szemerédi-Trotter theorem due to Kollar. The proof is sketched below.

Lemma 6 (Kollar). Let £ be a set of m distinct lines in P3.
1) There exists a surface S of degree at most \/6m — 2 which contains L.

2) For any irreducible surface U of degree g < /6m there exists a surface T of degree at most

677” which contains L and does not contain U.

Proposition 4 (Kollar). Fori=1,....n—1 let H; be a hypersurface in P" of degree a;, and suppose
their intersection B = Hy N ---N H,_1 is 1-dimensional. Let C C B be a reduced subcurve. Then
the arithmetic genus of C' satisfies

Pa(C) < pu(B) =1+ 7 (Zaz_n_gnaz

Proof. By induction on n together with the Kodaira vanishing theorem for P”, one can show that
h%(B,0p) = 1, so pa(B) = h'(B,0p) — h°(B,0p) + 1 = h'(B,Op). If J is the ideal sheaf of C
on B, we have

0—J—0—0Oc—0,

11



so by the long exact sequence of cohomology we have
HY(B,0p) — H'(C,0¢) — H*(B, J),
and H?(B,J) = 0 since B is 1-dimensional. Thus
Pa(C) = h'(C,Oc) = h°(C,0¢) +1 < h'(B,Op) = pa(B).
The formula for p,(B) follows by directly computing the Hilbert polynomial of B. O

Proposition 5 (Kollar). Let S, T C P? be surfaces of degrees a,b with no common components,
and let C be a reduced curve contained in S NT. For a point p € C let r(p) be the multiplicity of
C atp.

1) C has at most ab components.

2) 3 pect(p) —1 < Dla+b—2).
Following Rudnev, we give a concrete description of Pliicker coordinates for lines in P3.
Definition 5. For a line L in P? containing points [qo : q1 : 2 : 3], [uo : u1 : ug : ug), set
Pij = qivj — qjui,
and define the Pliicker coordinates of L to be [Pp1 : Po2 : Pos : Pas : P31 @ Pia]. Writing this as

[w:v],if go = up =1 and we set ¢ = (q1,q2,q3), u = (u1,u2,u3) then w =u — q,v = ¢ x w. Define
the Klein quadric K to be the 4-dimensional hypersurface

K={w:v]eP’|w-v=0}
Proposition 6. Two lines with Pliicker coordinates [w : V], [w' : V'] intersect if and only if

/ /
w-V+w--v=0,

": V] is contained in K. FEvery plane

contained in K is either an a-plane, corresponding to the set of lines through a specific point in P3,
or a B-plane, corresponding to the set of lines contained in a specific plane in P3. Any two a-planes
meet in a point, any two B-planes meet in a point, and an a-plane and a B-plane meet in a line
if and only if the point corresponding to the a-plane is contained in the plane corresponding to the

B-plane.

and this occurs if and only if the line connecting [w : V], [w

Definition 6. A ruling I' of a surface S C P? is a closed curve I' C K such that each point of T
corresponds to a line contained in S. The degree of a ruling I' is defined to be its degree as a curve
in P°. A line contained in S which is not contained in any ruling of S is called special.

Proposition 7. For any three skew lines L1, Lo, Ly C P3, the union of the collection of all lines
which intersect all three of Ly, Lo, Ly is a smooth quadric surface S. Conversely, every smooth
quadric surface S has two irreducible rulings I'1,I's of degree 2.

Corollary 2. FEvery irreducible ruled surface S is either a plane, a cone, a smooth quadric surface,
or else has a unique ruling and contains at most two special lines which do not intersect each other.
If S is not a plane, the degree d of an irreducible ruling is equal to the degree of S. Any nonspecial
line intersects at most d — 2 other nonspecial lines.

12



Theorem 12 (Cayley, Monge, Salmon, Voloch). Let S C P? be a surface of degree d, with d < p if
the characteristic is p. If S has no ruled components, then there is a surface T' of degree 11d — 24

such that S and T have no components in common, and every line contained in S is contained in
SNT.

Sketch. The surface T is defined by the equation cutting out those points p of S for which there
exists a line which is triply tangent to S at p (such a p is called a flecnodal point). The equation for
T can be computed explicitly using resultants. Next, one shows that if a component of .S consists
entirely of flecnodal points, then that component must be ruled. ]

Theorem 13 (Kollar). Let £ be a collection of m distinct lines in P such that for any three
distinct lines L1, Lo, L3 € L the number of lines from L intersecting all three of Ly, Lo, L3 is at
most \/m. If the characteristic is p, suppose that m < %pz. Then the total number of intersection
points between lines in L is at most

V6 (36—3)v6)\ s 3
(2—#\/%)7712 < V754mz2.

Proof. By choosing a generic projection to P?, we may assume without loss of generality that n = 3.
We may also assume that m > 754. Find a surface S of degree d < v/6m — 2 containing £, and
assume that the degree of S is minimal. Choose an ordering S, ... of the irreducible components
of S such that, letting £; = {l e L |1 C S;\ (S1U---US;_1)}, we have d‘eﬁgii‘i nonincreasing in 1.
Write m; = |£;|,d; = deg S;. The number of intersections between lines contained in different sets

L;, L; is at most

midj + mjdi . md — Zz m;id;
2 midi S ) Ty = 2
J<t 1<t
If S; is a cone, then there is at most 1 intersection point between lines in £; (the cone point). If
S; is a plane, then any two lines in S; intersect, so by assumption m; < y/m, and the number of

intersection points between lines in £; is at most

mi(mi —1) _ (mi —1)y/m
2 - 2 ’

If S; is a smooth quadric surface, then either one of the rulings on S; contains at most two lines from
L; or by assumption both rulings contain at most 4/m lines from £;, so the number of intersection
points between lines in £; is at most

max (mi —1,2(m; — 2), mlﬁ) < mi\/ﬁ'

2

If S; is ruled of degree at least 3, then since there are at most two special lines in S; and since
nonspecial lines meet at most d; —2 other nonspecial lines, the number of intersection points between

lines in £; is at most
mi(d; —2+2)4+2m;  myd;
5 = 9 + m;.

If S; is not ruled, then by Lemma [ and Theorem we can find a surface T of degree at most
min (lldi — 24, 62:_“") which contains £; but not S; (note that if we take degT = 11d; — 24 then

13



d; < %m < p). Thus by Proposition |5/ the number of intersections between lines in £; is at most

d;(11d; — 24
min (H(12di —26), 3m; (di +

) . _1 3
. 6m; 2)) < m;d; N (36 2)\/6mZ§

d; 2 Vi1

Putting everything together, we see that the total number of intersection points between lines in

L is at most
md (36 — 1)v/6 V6 (36— 1)v6
St AT <2+ m)

Corollary 3 (Rudnev). Suppose we have n points and n planes in P3 such that no more than \/n
points lie on any line and no more than v/n planes all contain a common line. Assume further that
if the characteristic is p we have n < %pZ. Then the number of point-plane incidences is at most

V6032n3 .

Proof. Taking Pliicker coordinates, we get a collection of n a-planes and n [S-planes, and every
incidence between a point and a plane becomes a pair of an a-plane and a S-plane which intersect
in a line. Intersecting the configuration with a general hyperplane which does not contain the
intersection of any two a-planes or the intersection of any two [-planes, we get a configuration of
2n lines in P*. Call a line coming from an a-plane an a-line, and similarly define S-lines. Any
two a-lines do not intersect, any two (-lines do not intersect, and intersections between a-lines
and S-lines correspond to point-plane incidences. For any two a-lines, any f-line intersecting
them corresponds to a plane containing the line through the corresponding points, so at most \/n
lines from the configuration intersect any pair of a-lines. Similarly, at most y/n lines from the
configuration intersecting any pair of S-lines. Thus we can apply Theorem [I3] to see that the

number of incidences is at most . .
V754(2n)2 = V6032nz2. O

Theorem 14 (Roche-Newton, Rudnev, Shkredov). If A is a finite subset of the nonzero elements
of a field with characteristic p satisfying |A|>|AA| < %pQ, then

o

|A+ AP|AAP > &.
= 6032

Proof. We estimate the number N of solutions to the equation
a+bed ' =e+ fghl,
with a,b,c,d, e, f,g,h € A, in two ways. By taking ¢ = d,g = h and applying Cauchy-Schwarz we
see that Al
N >

~ A+ A
Now to each tuple (a,h,bc) € A x A x AA we associate the point (a,bc,h™!), and to each tuple
(d,e, fg) € A x A x AA we associate the plane {(z,y,2) | z +d 'y = e + fgz}. This gives us a
collection of |A|?| AA| points and |A|?| AA| planes in P3 such that at most |AA| < /| AJ]2|AA| points
(respectively planes) lie on any line. By Corollary [3| we see that

s A8
V6032(|AI2|AA])2 > N > | .
(JA]?|AA])?2 > 2 A1 A

AP,
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By a similar argument, we obtain the following.

Theorem 15 (Roche-Newton, Rudnev, Shkredov). Let A, B,C be finite subsets of a field of char-
acteristic p. If max(|A|,|B|,|C|)? < |A||B||C| < Hp?, then

4l1BlC|

A+ BC|]? >
| + |_ 6032

2.3 General rings

Theorem 16 (Katz-Tao Lemma). Let A be a nonempty finite set of non-zero-divisors of a ring R.
There is a subset B C A such that

|A]?
4|AA]

and such that for any natural numbers k,l we have

|B| >

A+ APJAAIT\ T
|kBB — IBB| < (384|+H’> kA — LA

|A[10
Proof. By Theorem |7| we can find a subset X C A with | X| > l%' and

| AAJ?
A2

IAXA| <3 IX].

By Cauchy-Schwarz we have

(XA [ XPlAP
22 XA 4

so we can pick some y € A such that

| X[?14]
ANXy| > .
> lwAn Xyl > AA
zeX
Setting
RYIE!
B= X ||zAN Xy| >
{oexianxy = I,
we have X4
Bl > ————.
1Bl = 2| AA|

We now show by induction on h that if by, ..., by € B", then

4|A + A[|AA|>h’“’kA"

<
b1 A+ -+ b A < ( e

Suppose that we have shown this already for h. Letting b1, ..., b, € B* and 1, ..., 21, € B, since the
b;s and x;s are non-zero-divisors we have

\blx,A + bZ{L'ZA| = ‘A + A’

15



and

iz A N bidy = A0 Ay| > AT
11 1 y - 1 y — 4|AA’7
so by Proposition [1] we have

A+Al A+ A
[T AN Ayl [z AN Ay

AlA + A||AAN (PHDF
(TR

b1z1 A+ - - + b Al <

b1 Ay + - - + b Ay

completing the induction. A similar statement with both additions and subtractions can be proved
in the same way.
Now choose an element m € BA such that, setting

C ={(b,a) € Bx A|ba=m},

we have )
_1BlA] 1A
~ |BA| T 2|AA)?

Fixing a representation uv + tw for each sum in BB + BB, we have an injection

Cl [ X.

(BB +BB) x C x C < {(c,d,s) | ¢c,d € B s € cA+ dA},

sending (uv + tw, (b, a), (V',a’)) to (uvb, twd', (wv + tw)m). Thus, using | B3| < |[AX A| < 3%|X|,

we have

31\ 2
BB + BB| < <\B y> <4A+A|AA|

6
c A2 )*A+m
AAP A+ AS|AA[S
< 2‘ . 46
=04 e
A+ AfS|AAM
|A|20

|A+ A

= 3842

|A+ Al
By the same argument, for any natural numbers k, [ we get

3 7\ k-t
kBB — IBB| < <384|A+A‘|A“4’> kA — 1A].

’A|1O

More generally, we even have

ht1x K+l
h h |B"Y] (4]|A+ Al|AA
kB" — 1B"| < < c e kA — 1A]. O

Theorem 17 (Self-improving property). Let A be a finite subset of a ring R, and let D be a
nonempty subset of A — A. If x is an element of R and r € R* is a non-zero-divisor such that

|A]?

|tA+rA| < ——-

D]
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then there is an element d € (A — A) \ D such that
|2AA — AA]
|dA
If we take D to be the set of zero-divisors of A — A and we assume that D # A — A, then we have
|2AA — 2AA]|
Al

|zAA +rAA| < I3AA — 2AA.

|lzA+rA| < |I3AA — 3AA|.

Proof. By Cauchy-Schwarz, we have

Al
/ / — !/ / > ’
#{(a,b,a’,b') e AXx Ax Ax A|xza+rb=1xa +Tb}_7]xA+rA|’

SO

#{(d,e) e (A—A)x (A—A)|zd=re} > z 4] > |D|.

A+rA|
Since r is a non-zero-divisor, each pair (d,e) with zd = re corresponds to a different value of d.
Thus we can find d € (A — A) \ D with xd € r(A — A). By the Ruzsa covering lemma, there is a
set S C AA with
|dA + AA| < |2AA — AA]

S| <
51 < |dA| - |dA|

and
AACdA—-dA+ S.
Thus we have
|2AA — AA]

A4+ AA] < |0dA —2dA + oS + rAA < |S|IrBAA - 244) < ==

I3AA — 244|.

For the last claim, we apply the Ruzsa covering lemma to find S C AA — AA with
AA —AACdA—dA+ S

to get

WBAA—SAAL O

From here on, we take A to be a subset of a ring R such that A — A contains a non-zero-divisor,
and we let D be the set of zero-divisors in A — A. For any r € R, we define the set S, to be

lzA+7rA| < [(zA+rA)(A—A)| < |zdA—zdA+zS +rA(A—A)| <

S { ER||zA+ A|<|A2}
=T T T — .
D]

Proposition 8. |A — A|,|A+ A < [24AA — 2AA|.
Proposition 9. If r € R* then |S,.| < |A — A|?. If we also have

Al®
D] < ,
21244 — 2AA|[3AA — 3AA]

then
2|A — A|?|24A — 2AA||3AA — 3AA]

|AJ?

|Sr| <

17



Proof. Let x € S,. By the same argument as in Theorem we have

A AP

#1(d,0) € (A= AND)x (A=) | = re} > T oIDI > o

DI

Since for each (d,e) € ((A— A)\ D) x (A — A) there is at most one x such that zd = re, we see
that
(|A—Al—-|D)|A— 4]

i - 1D
[2AA—2AA[|3AA—3AA|

1Sy < O

Proposition 10. If r € R* and

|Al°

D
Pl < AT A2 A4 —24AP[3AA — 3AA]"

then Sy is closed under addition (and is therefore an additive group).
Proof. For z,y € S, we have

|lxA + rA||yA + rA|
|4 | A

|A+ A||2AA —2AA2|3AA - 3AA|? _ | A2

< .
|z +y)A+rA| < e =l

|A+ Al <

Proposition 11. If
A[®
|A+ A||2AA —2AAB|3BAA — 3AA)®’

then S1 is closed under multiplication (and is therefore a ring).

1D| <

Proof. Suppose z,y € S1. Apply the Ruzsa covering lemma to find S C yA with

lyA + A

S| < ——F——
Bl Al

and
yACA—A+S.
Then we have

A+ Al[244 - 2AAPBAA - 3AAP _ |AP
| Al |D|

lzyA + Al < |zA —zA+2S+ Al <

Proposition 12. Ifr € R*, a € (A— A)\ D, and

|A|10
|A+ A||2AA — 2AA|43AA — 3AA[Y

1D| <

then S,.S, C Syq.
Proof. Take x € S, and y € S,. We have

|yA + aA| |Aa + aA|

lyA + aA||24A — 2AA
Al A '

Al

[yA + Aa| < Al <

18



Take S C yA with
lyA + Aal|

S| <
5] Al

and
yA C Aa — Aa+ S.

Take S’ C 2 A — 2 A with

TA—wA+TA| _ JeA+rA]| A+ rA]|A+ Al

S < <
5 A A A A

and
xA—xACrA—rA+ 5.
Then

lzyA + rad| < |[rAa — xAa + xS + raA| < |S||rAa — rAa+ S'a + raA|
|A+ A||2AA — 2AA*|3AA — 3AA* _ |A|?

< |S||5'||Aa — Aa + aA| < )
11| | e i

Proposition 13. If r,s € R then sS, C Sg,.
Proposition 14. Ifr € R and |D| < %, then r € Sy.
Proposition 15. If r,s € R, thenr € S5 < s € 5,.
Proposition 16. Ifr,s € R*, S,NS;NR* # 0, and

Al

D
Pl < GAA—2AAP|3AA = 3AAF

then S, = S;.
Proof. Taket € S, NSsNR* and z € S,.. We have

[tA+1A||tA+ sA|
|A] |A]

IrA+ sA| < Al

Then
|tA+rA||rA+ sA|

|A] Al

|2AA — 2AAP|3AA - 3AAP AP
AP D

2A + sA| < 1A <

Theorem 18 (Inhomogeneous sum-product theorem). Let R be a ring, A C R. If

. A2 AP°
(A= A)\ B[ < min <|A T AA] 2[A 1 A[2AA _ 2AAP3AA _34AP )

then there is a subring S C R such that A C S and

_ 2|4 — A|?|24A — 2AA||3AA — 3AA]

|51 AP
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2
Proof. We take S = Sp, then A C S; by the assumption |[AA + A| < A " Previous propositions
D

show that 5] is a ring and give the required bound on the size of S;. O

Theorem 19 (Homogeneous sum-product theorem with invertible element). If R has a 1, AC R
has an invertible element a, and
~ 2|A+ A||2AA — 2AAP|3AA — 3AAPT

(A= A)\ R

then there is a subring S C R such that
ACaS=S5a

and

2|A — A]?|2AA — 2AA||3AA — 3AA]
|S| < AP .

Proof. We take S = S1. As before, we have S; a ring with the required size bound. We have
1 A]?
la A/H—A|:\AA—I—aA|§|AA+AA|<‘7|

by our assumption, so a'A C S, that is, A C aS. Since SS = S, we have

21244 — 2AAP|3AA — 3AA] _ |AJ?

aSa A+ Al < |aSa"'aS + aS| = |aS| < |S| < ,
| < = Jas| < |s] A B

so aSa~! C S. Since S is finite, this implies that a.S = Sa. O
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