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» If A= (A, Ry,...,Ryn) is a finite relational structure, we get an
associated Constraint Satisfaction Problem, CSP(A).

» An instance X = (X, Cy, ..., C;) of CSP(A) is a relational
structure with the same signature as A.

» The elements x € X are called the variables of the instance X.

» The elements ¢ = (x1, ..., xk) € C; are called the constraints
of the instance X.

» A solution to the instance X of CSP(A) is a homomorphism
a: X—=A.

» If ¢ = (x1,...,xk) € C; is a constraint, then a solution a must
satisfy (a(x1), ..., a(xx)) € R;.
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Approximate solutions

» An approximate solution to the instance X is an arbitrary map
a: X — A

» The value of the approximate solution a is the fraction of the
constraints which are satisfied by a:

Z,-#{(Xl, ...,Xk) S C,' | (a(xl), ...,a(xk)) € R,'}
>-ilGil '

» The value of the instance X is the maximum value of any
approximate solution a: X — A.

» An approximate solution with value 1 is the same thing as an
ordinary solution.
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Robustly solvable CSPs

Definition
We say that CSP(A) is robustly solvable if there is a function
f :]0,1] — [0, 1] such that:

» when X is an instance of value 1 — ¢, we can algorithmically find an
approximate solution a : X — A of value 1 — f(¢) in polynomial
time,

> lim._of(e) =0.

» The main barrier to being robustly solvable is the ability to
simulate affine CSPs.

Theorem (Hastad)

IfA=(Z/p,{x+y=2z},...{x+y=z+p—1}), then it is
NP-hard to find an approximate solution a : X — A of value % + €,
even if the instance X is promised to have value 1 — e.
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Characterization of robustly solvable CSPs

» We say that a relational structure A has bounded width if
CSP(A) can be solved by a local consistency algorithm.

Theorem (Conjectured by Guruswami and Zhou, proved by
Barto and Kozik)
If P # NP, the following are equivalent:

» CSP(A) is robustly solvable,
» A has bounded width,

» CSP(A) can be robustly solved via the standard semidefinite
programming relaxation.

» Furthermore, Barto and Kozik's algorithm has

log log(1/e€)

) < Tiog(1/e)
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Bounded width

» For any finite relational structure A, the computational
complexity of CSP(A) is controlled by the set of
polymorphisms Pol(A).

Theorem (Bulatov, Barto, Kozik)

If A is a finite core relational structure, and if A = (A, Pol(A)) is
the corresponding algebraic structure, then TFAE:

» CSP(A) can be solved by a local consistency algorithm,

» The variety Var(A) generated by A contains no nontrivial
quasi-affine algebras,

» Var(A) is congruence meet-semidistributive,

» every cycle-consistent instance of CSP(A) has a solution.
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The Linear Programming Relaxation

» For any finite set S, let A(S) be the collection of probability
distributions on S.

» We think of A(S) as the convex hull of the one-hot vectors
(0,...,0,1,0,...,0) in R,

Definition
A fractional solution to an instance X of CSP(A) is the following:

» amap a: X — A(A), together with
> a collection of maps r; : C; = A(R;), such that

» for each constraint ¢ = (x1,...,xx) € C;, and for each j < k, the
distribution a(x;) is the jth marginal probability distribution of r;(c).

» We can define approximate fractional solutions similarly, with
ri» G; — A(AK) instead of r; : CG; — A(R;).
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Rounding schemes for the Linear Programming relaxation

» An LP rounding scheme is just a map
s: A(A) — A

» We say that the LP rounding scheme s solves CSP(A) if for
every instance X, and for every fractional solution

a: X —=A(A), ri:CG— A(R),

the map
soa: X—=>A

defines a homomorphism X — A.
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Example of an LP rounding scheme
» Consider the relational structure
A=({-1,0,+1},{x=—-y}{x+y+z>1}).
» CSP(A) is solved by the LP rounding scheme s given by
+1 py1 > p-a,

s(p-1,p0sp+1) =0  py1=p-1,
-1 pi1<p-1.

» For every n, the symmetric function s, given by

Sn(X1, -y Xn) =<0 > xi =0,
-1 ZiX; <0

is a polymorphism of A.
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Characterization of LP rounding schemes

Theorem (Kun, O'Donnell, Tamaki, Yoshida, Zhou)
For a finite relational structure A, TFAE:

> CSP(A) is solved by some LP rounding scheme s,

» for every n, there is a symmetric n-ary polymorphism s, € Pol(A).

» An LP rounding scheme is a collection of polymorphisms
sn € Pol(A) that satisfy certain height 1 identities (asserting
symmetry).

» Unfortunately, not every bounded width CSP has an LP
rounding scheme:

2-SAT = ({0,1}, {x £ y}, {x > y})

has no binary symmetric polymorphism.
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From fractional solutions to preference relations

> If p € A(A) is a probability distribution over A, then we can
define a total preorder <, on the powerset P(A):

U,V = > pu<> po.
uel veV

» Total preorders are also known as preference relations.

» A total preorder < can be decomposed into an equivalence
relation ~ on P(A) and a total ordering < on P(A)/~.

» Consider the probability distribution py = p1 = % on 2-SAT.
» The corresponding preference relation is

0 <p {0} ~p {1} < {0,1}.

» We want to outlaw this sort of preference relation.
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Vague elements

Definition
A vague element v of a set S is a preference relation <, on P(S)
satisfying the following properties for all U, V C §S:

(Monotonicity) If U C V, then U <, V.

> (Self-duality) If U <, V, then S\ V <, S\ U.

(Support) If U ~, S, then UNV ~, V.

The smallest set U such that U ~, S is called the support of v.
(Nontriviality) S #, 0.

> (Weak Coherence) If U ~, V £, (), then UNV #£, 0.

v

v

v

» We write V(S) for the collection of vague elements of a set S.
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Marginals of vague elements

>

>

The map S — V(S) defines a functor.
If f:S— T and v € V(S), we define f,(v) € V(T) by
UzewyV = FHU) = V).

In particular, if R C AX is a relation, and r € V(R), then we
can define the ith marginal of r to be

(mio1)«(r) € V(A),

where 1 : R < A¥ is the inclusion.

Note that ¢,(r) is a vague element of AX with support
contained in R.
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Vague solutions, take one

» Vague solutions could be defined exactly analogously to
fractional solutions:

Definition
A strong vague solution to an instance X of CSP(A) is the
following:

» amap a: X — V(A), together with
> a collection of maps r; : GG — V(R;), such that

» for each constraint ¢ = (x1,...,xx) € G, and for each j < k, the
vague element a(x;) is the jth marginal of r;(c).

» But describing a vague element of R; sounds very onerous.
We will make a simpler (weaker) definition.
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Vague solutions, take two

Definition

If RC A; X -+ X Ak, then a collection of vague elements

vi € V(A;) vaguely satisfies the relation R if there exists a preorder
=, on the disjoint union

P(A) U--- UP(A)

such that
» for each /, the restriction of <, to P(A;) is <,

» for each i,j and each U C A;, we have
U =, U—i—w;j(Rﬂ(Sl ><-~-><S‘1<))7

where the S; are the supports of the vague elements v;.
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Vague rounding schemes

» A vague rounding scheme is just a map
s:V(A) — A

» We say that the vague rounding scheme s solves CSP(A) if
for every instance X, and for every vague solution

a: X —V(A)

such that (a(x1), ..., a(xk)) vaguely satisfies R; for each
constraint ¢ = (xi, ..., xx) € C;, the map

soa: X — A

defines a homomorphism X — A.
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Main result

Theorem (Z.)
For a finite relational structure A, TFAE:

» A has bounded width,

» there is a vague rounding scheme s : V(A) — A which solves
CSP(A),

» for every n, and for every vague element v € V({1, ..., n}), there is
an n-ary polymorphism s, € Pol(A), such that for all

f:{1,...,n} = {1,....,m}
the height 1 identity

S (XF(1)s oo Xe(n)) R SE(v)(X15 oy Xm)

is satisfied.
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Multisorted CSPs

» In order to prove this result, it is more convenient to work in
the framework of multisorted CSPs.

» Let A = (A, Pol(A)) be the algebraic structure corresponding
to A.

» We let each variable x € X have a different domain A, with
Ay an arbitrary finite algebra in Var(A).

» A constraint ¢ now consists of a tuple (xi, ..., xx) of variables,
together with a constraint relation

R<A, X xA,.

» A solution is a map x — ay such that for each constraint ¢ as
above, we have
(axs-sax,) €R.
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Paths

> A step from y to z is a constraint
((Xl7 ...,Xk),]R)
and a pair i,/ such that x; = y and x; = z.
R
AN
A, A,
» A path is a sequence of steps where the endpoints match up.

» We use additive notation for combining paths: p + g means
“first follow p, then q".
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Propagating information along paths

» If BC A, and pis a step from y to z through a relation R,
we write

B+ p=B+m,(R)=m(r, (B)NR) C A,.

» This encodes the implication: “if a, € B, then a, € B+ p".

> Extend this notation to paths in the obvious way:

B+ (p1+ p2) = (B+ p1) + p2, etc.

> If B <A, is a subalgebra, then B+ p < A, is also a
subalgebra.
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Consistency

» An instance is arc-consistent if for all paths p from x to y, we
have
Ay+p=A,.

» Arc-consistency is equivalent to: for all constraint relations R,
the projections 7; : R — A,; are surjective.

» An instance is cycle-consistent if for all paths p from x to x,
and for all a € A, we have

ae{a}l+p.

» Beginner Sudoku players start by establishing arc-consistency,
then they move on to establishing cycle-consistency.
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Weaker consistency!

» | call an instance weakly consistent if it satisfies:

(P1) arc-consistency, and

(W) A+p+qg=Aimplies AN (A+p) # 0.

» | will use this result, from a previous AAA conference:

Theorem (Z.)

If Var(A) is SD(A), then every weakly consistent instance of
CSP(Vargin(A)) has a solution.
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Connection to vague solutions

Proposition
If an instance X of a multisorted CSP is weakly consistent, then it
has a vague solution

x = ax € V(Ay)

such that each ax has support equal to A,.

» Define a preorder < on | |, P(Ay) by (x,A) < (y, B) if there
is some path p from x to y such that A+ p C B.

» Extend < to a total preorder <’ without changing the
associated equivalence relation ~.

» Let <, be the restriction of =" to P(Ay).



From a vague solution to a weakly consistent instance

> Now suppose that we have a vague solution
x = ax € V(A)).

This doesn't necessarily mean that our instance X is weakly
consistent.



From a vague solution to a weakly consistent instance

> Now suppose that we have a vague solution
x = ax € V(A)).

This doesn't necessarily mean that our instance X is weakly
consistent.

» We will produce a weakly consistent instance X} which has
many copies of each variable and relation from X, in order to
apply Ramsey’s Theorem.



From a vague solution to a weakly consistent instance

> Now suppose that we have a vague solution
x = ax € V(A)).

This doesn't necessarily mean that our instance X is weakly
consistent.

» We will produce a weakly consistent instance X} which has
many copies of each variable and relation from X, in order to
apply Ramsey’s Theorem.

> The trick is to exploit the fact that everything is stated in
terms of total preorders.
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Compatibility between vague elements and functions

> If f: P(A) — Nand v € V(A), we say f is compatible with v
if
U=,V <<= f(U)<f(V).

» Note that f is determined by v and im(f) C N.

> |ffZ'P(A1)l_|‘--|_|'P(Ak)—>N, and if RC A; X -+ X Ag, we
say f is compatible with R if

f(U) < F(U +7;(R))

forall i,j < k and all U C A;.
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Constructing the weakly consistent instance

» X3 is constructed as follows:

» For x € X and f : P(Ax) — N compatible with a,, we
introduce a variable (x, f) of X} with domain A,.

» For ¢ = ((x1, ..., k), R) and compatible
f:P(A,)U---UP(A) — N, we introduce the constraint

(((X17 f’P(Axl))7 ) (Xk> f|77(AXk)))7R)

of X3.

» By construction, if there is a path p from (x, f) to (x,f) in
X%, and if A C Ay, then

f(A)<f(A+p), so A=, A+p.
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Applying Ramsey’'s Theorem

> Let s be a solution to the weakly consistent instance Xj.

» By Ramsey's Theorem, there is an infinite subset S C N such
that for each x € X there is some §, with

S(x,f) = S

for all (x, f) € X} with im(f) C S.

» If ay, ..., ax, vaguely satisfy the relation R, then there is some
compatible f : P(A )U---UP(A,) = S, so

(8185 = (S lp(ay ) = S rng ) € R

» So §is a solution to X!
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Existence of the vague rounding scheme

» To obtain the vague rounding scheme
s:V(A) = A,

we apply this argument to the “most generic” instance X
which has a vague solution.

» The variables of this X correspond to the elements v of V(A),
with variable domain A, equal to the support of v.

» We impose a constraint ((vi, ..., vk), R) in X whenever
R <sq Ay, X --- x A, is vaguely satisfied by vq, ..., vk.
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Back to robust satisfaction

Theorem (Z.)

If the semidefinite programming relaxation of an instance X of
CSP(A) has value 1 — ¢, then we can algorithmically find a vague
solution to X which vaguely satisfies a 1 — f(e) fraction of the
constraints in polynomial time, where

1
f(E) <A W

» Once we have the (approx.) vague solution, we apply a vague
rounding scheme to get an actual (approx.) solution.

» This is best possible: we can’t robustly solve HORN-SAT with
f(e) = o(1/log(1/€)) unless the Unique Games Conjecture is
false, by a result of Guruswami and Zhou.



Thank you for your attention.



