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Background on multisorted CSPs

I If V is a pseudovariety of finite algebras, we get an associated
multisorted Constraint Satisfaction Problem, which we will
call CSP(V).

I An instance X of CSP(V) consists of a set of variables and
constraints.

I A variable is a variable name x together with a variable
domain Ax ∈ V.
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Background on multisorted CSPs

I A constraint is:

I a constraint relation R ∈ V,
I a list of variable names x1, ..., xk , and
I a projection homomorphism πi : R→ Axi for each i .
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I A solution is an assignment x 7→ ax ∈ Ax , such that for each
constraint, ∃r ∈ R with

πi (r) = axi

for i = 1, ..., k .
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Paths

I A step from y to z is a constraint

(R, (x1, ..., xk), (π1, ..., πk))

and a pair i , j such that xi = y and xj = z .
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I A path is a sequence of steps where the endpoints match up.

I We use additive notation for combining paths: p + q means
“first follow p, then q”.
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Propagating information along paths

I If B ⊆ Ay and p is a step from y to z through a relation R,
we write

B + p = B + πyz(R) = πz(π−1y (B)) ⊆ Az .

I This encodes the implication: “if ay ∈ B, then az ∈ B + p”.

I Extend this notation to paths in the obvious way:

B + (p1 + p2) = (B + p1) + p2, etc.

I If B ≤ Ay is a subalgebra, then B + p ≤ Az is also a
subalgebra.
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Consistency

I An instance is arc-consistent if for all paths p from x to y , we
have

Ax + p = Ay .

I Arc-consistency is equivalent to: for all constraint relations R,
the projections πi : R→ Axi are surjective.

I An instance is cycle-consistent if for all paths p from x to x ,
and for all a ∈ Ax , we have

a ∈ {a}+ p.

I Beginner Sudoku players start by establishing arc-consistency,
then they move on to establishing cycle-consistency.



Consistency

I An instance is arc-consistent if for all paths p from x to y , we
have

Ax + p = Ay .

I Arc-consistency is equivalent to: for all constraint relations R,
the projections πi : R→ Axi are surjective.

I An instance is cycle-consistent if for all paths p from x to x ,
and for all a ∈ Ax , we have

a ∈ {a}+ p.

I Beginner Sudoku players start by establishing arc-consistency,
then they move on to establishing cycle-consistency.



Consistency

I An instance is arc-consistent if for all paths p from x to y , we
have

Ax + p = Ay .

I Arc-consistency is equivalent to: for all constraint relations R,
the projections πi : R→ Axi are surjective.

I An instance is cycle-consistent if for all paths p from x to x ,
and for all a ∈ Ax , we have

a ∈ {a}+ p.

I Beginner Sudoku players start by establishing arc-consistency,
then they move on to establishing cycle-consistency.



Consistency

I An instance is arc-consistent if for all paths p from x to y , we
have

Ax + p = Ay .

I Arc-consistency is equivalent to: for all constraint relations R,
the projections πi : R→ Axi are surjective.

I An instance is cycle-consistent if for all paths p from x to x ,
and for all a ∈ Ax , we have

a ∈ {a}+ p.

I Beginner Sudoku players start by establishing arc-consistency,
then they move on to establishing cycle-consistency.



Bounded Width

Theorem (Bulatov, Barto, Kozik)

If V is a pseudo-variety of finite idempotent algebras, then TFAE:

I CSP(V) can be solved by a local consistency algorithm,

I V contains no nontrivial quasi-affine algebras,

I V is congruence meet-semidistributive,

I every cycle-consistent instance of CSP(V) has a solution.
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Some other types of consistency

I The original proof of the cycle-consistency result proved
something stronger: only need “pq-consistency”.

I An instance is pq-consistent if for all cycles p, q from x to x
and all a ∈ Ax , there exists a j ≥ 0 such that

a ∈ {a}+ j(p + q) + p.

I pq-consistency is a strange condition, but usefully weak.

I Before pq-consistency was introduced, there were “Prague
instances”.
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Weak Prague Instances

I An instance is a weak Prague instance if:

I (P1) it is arc-consistent,

I (P2) A + p = A implies A− p = A,

I (P3) A + p + q = A implies A + p = A.

I Condition (P2) is closely related to the Linear Programming
relaxation of the instance.

I Condition (P3) is closely related to the Semidefinite
Programming relaxation of the instance.

I Barto asks: are (P1) and (P3) enough to guarantee solvability
for bounded width CSPs?
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Relationships between consistency notions

(2, 3)-minimal

Prague instance

(P1), (P2), (P3)

pq-consistent

cycle-consistent

(P1), (P3)

SDP-relaxation

LP-relaxation

(P1), (P2)

arc-consistent

“weakly consistent”



Even weaker consistency!

I I call an instance weakly consistent if it satisfies:

(P1) arc-consistency, and

(W) A + p + q = A implies A ∩ (A + p) 6= ∅.

I This is equivalent to requiring that for all cycles p, q from x
to x and a ∈ Ax , there exist j , k ≥ 0 such that

a ∈ {a}+ j(p + q) + p − k(p + q).

I My main result:

Theorem (Z.)

If V is a pseudovariety of finite SD(∧) algebras, then every weakly
consistent instance of CSP(V) has a solution.
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Main tool

I The only algebraic tool needed to prove this result is the
concept of a stable subalgebra, based on the ideas in Zhuk’s
paper “Strong subalgebras and the Constraint Satisfaction
Problem”.

I Stable subalgebras are like absorbing subalgebras, but they are
aimed at constraining the structure of subdirect relations
instead of arbitrary relations.

I My definition of stable subalgebras is ugly, so instead I will
describe the axioms that stable subalgebras satisfy.
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Axioms for Stability

Definition
A binary relation � on V is a stability concept if � satisfies the
following axioms:

I (Subalgebra) If B � A, then B ≤ A.

I (Transitivity) If C � B � A, then C � A.

I (Intersection) If B,C � A and B ∩ C 6= ∅, then B ∩ C � B.

I (Propagation) If f : A� B is surjective, then

I (Pushforward) if C � A, then f (C) � B, and

I (Pullback) if D � B, then f −1(D) � A.

I (Helly) If B,C,D � A have B ∩ C 6= ∅, C ∩ D 6= ∅, and
B ∩ D 6= ∅, then B ∩ C ∩ D 6= ∅.

I (Ubiquity) For all A ∈ V, there is some a ∈ A such that
{a} � A.
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Alternate forms of the axioms

I The propagation axiom is equivalent to:

R ≤sd A× B, C � A =⇒ C + R � B.

I Modulo the intersection axiom, the Helly axiom is equivalent
to:

B1, ...,Bn � A, Bi ∩ Bj 6= ∅ ∀i , j =⇒
⋂
i

Bi 6= ∅.

I The propagation, intersection, and Helly axioms imply that

R ≤sd
∏

i Ai

Bi � Ai

πij(R) ∩ (Bi × Bj) 6= ∅

 =⇒ R ∩
(∏

i

Bi

)
6= ∅.
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Aside: the binary part of an instance

I To any instance X, we can associate a simpler instance Xbin

where all relations are binary.

I We replace every k-ary relation of X by
(k
2

)
binary relations:

R

Ax

Ay Az

=⇒ R R

R

Ax

Ay Az

I If X is arc-consistent and Xbin has a stable solution, then this
solution will also be a solution to X by the Helly axiom.
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Stability exists

I Main technical result:

Theorem (Z.)

If V is a pseudovariety of finite idempotent SD(∧) algebras, then
there is at least one stability concept � on V.

I My proof is an ad-hoc mess. I use König’s Lemma to reduce
to the case where V is finitely generated, take a convenient
reduct...

I Morally, stability is generated by three basic cases:

I Zhuk’s “central” absorbing subalgebras are stable subalgebras,

I every element of a polynomially complete, absorption-free
algebra is stable, and

I any subalgebra which contains a strongly absorbing subalgebra
is stable.
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Applying stability

I Let’s use � to prove the result about weakly consistent
instances of CSP(V).

I First we go even weaker...

I Say an instance is stably consistent if:

(P1) it is arc-consistent, and

(S) if B � Ax and B + p + q = B, then B ∩ (B + p) 6= ∅.

I We will prove that every stably consistent instance has a
stable solution by induction.
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Standard inductive strategy

I All the arguments in the literature on bounded width CSPs
have the same structure:

Step 1 produce an arc-consistent reduction with nice algebraic
properties,

Step 2 prove that every arc-consistent reduction with nice algebraic
properties inherits a stronger form of consistency.

I By a reduction, I mean replace all of the variable domains and
constraint relations of the instance by subalgebras of the
original ones.
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Step 1

I For Step 1, everyone uses the same main idea.

I Define an implication digraph, where:

I vertices are pairs (x ,B) s.t. B ( Ax , and

I for every step p from x to y , we have a directed edge from
(x ,B) to (y ,B + p).

I Pick a “maximal” strongly connected component C of some
subdigraph of the implication digraph.

I By ubiquity and propagation, we can restrict to the
subdigraph of (x ,B) such that B � Ax , B 6= Ax .

I We now try to restrict Ax to B for every (x ,B) in our
maximal strongly connected component C.



Step 1

I For Step 1, everyone uses the same main idea.

I Define an implication digraph, where:

I vertices are pairs (x ,B) s.t. B ( Ax , and

I for every step p from x to y , we have a directed edge from
(x ,B) to (y ,B + p).

I Pick a “maximal” strongly connected component C of some
subdigraph of the implication digraph.

I By ubiquity and propagation, we can restrict to the
subdigraph of (x ,B) such that B � Ax , B 6= Ax .

I We now try to restrict Ax to B for every (x ,B) in our
maximal strongly connected component C.



Step 1

I For Step 1, everyone uses the same main idea.

I Define an implication digraph, where:

I vertices are pairs (x ,B) s.t. B ( Ax , and

I for every step p from x to y , we have a directed edge from
(x ,B) to (y ,B + p).

I Pick a “maximal” strongly connected component C of some
subdigraph of the implication digraph.

I By ubiquity and propagation, we can restrict to the
subdigraph of (x ,B) such that B � Ax , B 6= Ax .

I We now try to restrict Ax to B for every (x ,B) in our
maximal strongly connected component C.



Step 1

I For Step 1, everyone uses the same main idea.

I Define an implication digraph, where:

I vertices are pairs (x ,B) s.t. B ( Ax , and

I for every step p from x to y , we have a directed edge from
(x ,B) to (y ,B + p).

I Pick a “maximal” strongly connected component C of some
subdigraph of the implication digraph.

I By ubiquity and propagation, we can restrict to the
subdigraph of (x ,B) such that B � Ax , B 6= Ax .

I We now try to restrict Ax to B for every (x ,B) in our
maximal strongly connected component C.



Step 1

I For Step 1, everyone uses the same main idea.

I Define an implication digraph, where:

I vertices are pairs (x ,B) s.t. B ( Ax , and

I for every step p from x to y , we have a directed edge from
(x ,B) to (y ,B + p).

I Pick a “maximal” strongly connected component C of some
subdigraph of the implication digraph.

I By ubiquity and propagation, we can restrict to the
subdigraph of (x ,B) such that B � Ax , B 6= Ax .

I We now try to restrict Ax to B for every (x ,B) in our
maximal strongly connected component C.



Step 1

I For Step 1, everyone uses the same main idea.

I Define an implication digraph, where:

I vertices are pairs (x ,B) s.t. B ( Ax , and

I for every step p from x to y , we have a directed edge from
(x ,B) to (y ,B + p).

I Pick a “maximal” strongly connected component C of some
subdigraph of the implication digraph.

I By ubiquity and propagation, we can restrict to the
subdigraph of (x ,B) such that B � Ax , B 6= Ax .

I We now try to restrict Ax to B for every (x ,B) in our
maximal strongly connected component C.



Step 1

I For Step 1, everyone uses the same main idea.

I Define an implication digraph, where:

I vertices are pairs (x ,B) s.t. B ( Ax , and

I for every step p from x to y , we have a directed edge from
(x ,B) to (y ,B + p).

I Pick a “maximal” strongly connected component C of some
subdigraph of the implication digraph.

I By ubiquity and propagation, we can restrict to the
subdigraph of (x ,B) such that B � Ax , B 6= Ax .

I We now try to restrict Ax to B for every (x ,B) in our
maximal strongly connected component C.



Step 1, continued

I Possible problem: there could be multiple Bs with (x ,B) ∈ C.

I If (x ,B) and (x ,C) are both in C, then there are p, q s.t.

B + p = C, C + q = B.

I In this case, stable consistency guarantees that

B ∩ C = B ∩ (B + p) 6= ∅.

I By the stronger version of the Helly axiom, we then have⋂
(x ,B)∈C

B 6= ∅.

I Looks good so far, but is this strong enough to guarantee
arc-consistency?
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Step 1, completed

I Suppose that restricting Ax to B and enforcing
arc-consistency causes a contradiction.

I Then we can find a proof tree which witnesses this.

I Consider this proof tree as an instance of CSP(V) (a
subinstance of the “universal cover” of our original instance).

I Let R be the set of solutions to this tree instance, where we
don’t restrict Ax to B.

I R is subdirect in the product of the variable domains by
arc-consistency.

I Any pair of copies of Ax can be simultaneously restricted to B
by stable consistency (and maximality of C).

I By the Helly axiom, we can restrict all copies of Ax to B
simultaneously.
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Step 2

I For Step 2, let + be addition of paths in the original instance,
and let +′ be addition of paths in the reduced instance, and
let A′x be the reduced variable domains.

I We just need to show that

B ∩ (B + p) 6= ∅ =⇒ B ∩ (B +′ p) 6= ∅

for B � A′x .

I Unroll the path p (duplicating vertices that occur along it
multiple times):

R1 R2 R3Ax Ay Az Ax

Au Av

Aw
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Step 2, continued

I We need to show that there is a solution to the reduced path
instance

R′1 R′2 R′3A′x A′y A′z A′x

A′u A′v

A′w

where the two copies of x are assigned values in B.

I Let R be the solution set to the original unrolled path
instance.

I Let R′ be the solution set to the reduced path instance.

I Let S1 be the set of elements of R where the first copy of x is
assigned a value in B, and similarly define S2.

I Apply the Helly axiom to S1,S2,R′ � R.
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Applications to height one identities

I We can give a new characterization of locally finite SD(∧)
varieties:

Theorem (Z.)

If V is a locally finite variety, then V is SD(∧) if and only if there is
a 4-ary term t which satisfies the identities

t(x , x , y , z) ≈ t(y , z , z , x) ≈ t(z , x , y , x)

and
t(x , y , x , z) ≈ t(x , z , y , x) ≈ t(y , z , x , x)

simultaneously.

I This can be proved by combining the weak consistency result
with a Ramsey-theoretic argument.
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Another height one identity

I A tougher application:

Theorem (Z.)

If V is a locally finite SD(∧) variety, then V has a 5-ary “almost
cyclic” term c which satisfies the identity

c(x , x , y , z ,w) ≈ c(x , y , z ,w , x) ≈ c(y , z ,w , x , x)

≈ c(z ,w , x , x , y) ≈ c(w , x , x , y , z).

I For this, we need to use the fact that weak consistency
implies the existence of a stable solution.

I This easily implies that every algebra in V of size ≤ 4 has a
5-ary cyclic term!
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Questions for the audience

I Can we use weak consistency to improve the robust algorithm
for solving bounded width CSPs due to Barto and Kozik?

I We can at least use it to improve the derandomization of the
robust algorithm.

I Is there a “canonical” stability concept?

I Does every locally finite SD(∧) variety have a p-ary “almost
cyclic” term for every prime p?

I How much do we have to weaken the ubiquity axiom for
stability concepts in pseudovarieties which are not SD(∧)?

I Are there any CSPs which are solved by the Linear
Programming relaxation, but which are not solved by
enforcing (P1) and (P2)?



Questions for the audience

I Can we use weak consistency to improve the robust algorithm
for solving bounded width CSPs due to Barto and Kozik?
I We can at least use it to improve the derandomization of the

robust algorithm.

I Is there a “canonical” stability concept?

I Does every locally finite SD(∧) variety have a p-ary “almost
cyclic” term for every prime p?

I How much do we have to weaken the ubiquity axiom for
stability concepts in pseudovarieties which are not SD(∧)?

I Are there any CSPs which are solved by the Linear
Programming relaxation, but which are not solved by
enforcing (P1) and (P2)?



Questions for the audience

I Can we use weak consistency to improve the robust algorithm
for solving bounded width CSPs due to Barto and Kozik?
I We can at least use it to improve the derandomization of the

robust algorithm.

I Is there a “canonical” stability concept?

I Does every locally finite SD(∧) variety have a p-ary “almost
cyclic” term for every prime p?

I How much do we have to weaken the ubiquity axiom for
stability concepts in pseudovarieties which are not SD(∧)?

I Are there any CSPs which are solved by the Linear
Programming relaxation, but which are not solved by
enforcing (P1) and (P2)?



Questions for the audience

I Can we use weak consistency to improve the robust algorithm
for solving bounded width CSPs due to Barto and Kozik?
I We can at least use it to improve the derandomization of the

robust algorithm.

I Is there a “canonical” stability concept?

I Does every locally finite SD(∧) variety have a p-ary “almost
cyclic” term for every prime p?

I How much do we have to weaken the ubiquity axiom for
stability concepts in pseudovarieties which are not SD(∧)?

I Are there any CSPs which are solved by the Linear
Programming relaxation, but which are not solved by
enforcing (P1) and (P2)?



Questions for the audience

I Can we use weak consistency to improve the robust algorithm
for solving bounded width CSPs due to Barto and Kozik?
I We can at least use it to improve the derandomization of the

robust algorithm.

I Is there a “canonical” stability concept?

I Does every locally finite SD(∧) variety have a p-ary “almost
cyclic” term for every prime p?

I How much do we have to weaken the ubiquity axiom for
stability concepts in pseudovarieties which are not SD(∧)?

I Are there any CSPs which are solved by the Linear
Programming relaxation, but which are not solved by
enforcing (P1) and (P2)?



Questions for the audience

I Can we use weak consistency to improve the robust algorithm
for solving bounded width CSPs due to Barto and Kozik?
I We can at least use it to improve the derandomization of the

robust algorithm.

I Is there a “canonical” stability concept?

I Does every locally finite SD(∧) variety have a p-ary “almost
cyclic” term for every prime p?

I How much do we have to weaken the ubiquity axiom for
stability concepts in pseudovarieties which are not SD(∧)?

I Are there any CSPs which are solved by the Linear
Programming relaxation, but which are not solved by
enforcing (P1) and (P2)?



Thank you for your attention.


