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1 Introduction

These notes are a work in progress, based on a student seminar series at Stanford. The eventual
goal is to understand the proof of Deligne’s Weil II, as well as the theory of trace functions, without
learning French.

2 Hasse bound for elliptic curves

2.1 Manin’s elementary proof for characteristic not equal to 2 or 3

The exposition here follows Chahal’s paper [2] extremely closely.
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Theorem 1 (Hasse bound). Let q = pm, p a prime other than 2, and let a, b ∈ Fq be such that
∆ = 4a3 + 27b2 6= 0. Let

Nq = #{(x, y) ∈ F2
q | y2 = x3 + ax+ b}

(note that this does not count the point at infinity). Then

|Nq − q| ≤ 2
√
q.

Proof. We work in the function field Fq(t). Set λ = λ(t) = t3 + at + b throughout, and define the
twisted curve Eλ by

λy2 = x3 + ax+ b.

The addition formulae for two points P1, P2 on Eλ are given by

x(P1 + P2) = λ

(
y1 − y2

x1 − x2

)2

− (x1 + x2)

if P1 6= P2, or

x(2P ) =
(3x2 + a)2

4(x3 + ax+ b)
− 2x

if P1 = P2 = P .
We now define a sequence of points Pn on Eλ for n ∈ Z by

Pn = (tq, (t3 + at+ b)
q−1
2 ) + n · (t, 1)

(that P0 is on Eλ follows from well-known properties of Frobenius). Setting (xn, yn) = Pn and
writing xn = fn

gn
with fn, gn relatively prime elements of Fq[t] whenever Pn is not the zero element

of the curve Eλ (which we will denote O), we define a sequence dn by

dn =

{
deg fn Pn 6= O,

0 Pn = O.

By the definition of P0, we clearly have d0 = q.

Claim: d−1 = Nq + 1. To see this, note that by the addition formula we have

x−1 = (t3 + at+ b)

(
(t3 + at+ b)

q−1
2 + 1

tq − t

)2

− (tq + t) =
t2q+1 +O(t2q)

(tq − t)2
.

Thus, to compute the degree of f−1 we just need to know how many factors of the denominator
cancel with factors of the numerator in the fraction

(t3 + at+ b)((t3 + at+ b)
q−1
2 + 1)2

(tq − t)2
.

The denominator factors as
∏
α∈Fq(t−α)2, and t−α divides the numerator once if α3 +aα+ b = 0,

and twice if (α
3+aα+b
q ) = −1 (here (αq ) is the quadratic residue symbol for Fq). Thus,

d−1 = 2q + 1−
∑
α∈Fq

(
1− (α

3+aα+b
q )

)
= Nq + 1.
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Lemma: If Pn 6= O, then xn 6= 0 and deg fn > deg gn.

Basic Identity: dn−1 + dn+1 = 2dn + 2.

Proof of the Hasse bound given these: From the Basic Identity, we easily see that

dn = n2 − (d−1 − d0 − 1)n+ d0 = n2 − (Nq − q)n+ q.

Let r0, r1 be the roots of the quadratic n 7→ n2−(Nq−q)n+q. We have (r0−r1)2 = (Nq−q)2−4q ∈ Z,
so if r0, r1 were real and distinct then their difference would be at least 1, so there would then
necessarily be some n such that either dn < 0 or dn = 0 = dn+1. Either one of these possibilities
contradicts the Lemma, so we must have (r0 − r1)2 ≤ 0, or equivalently,

|Nq − q| ≤ 2
√
q.

Proof of Lemma: The plan is to formally evaluate xn, yn at t =∞ (equivalently, we are looking
at the ratio of the leading term of the numerator and the leading term of the denominator), and

to induct on |n|. Note that from y2
n = x3n+axn+b

t3+at+b
, we see that if xn|∞ 6=∞ then yn|∞ = 0.

Assume that the Lemma holds for n but fails for n+ 1 (the reverse case, for n < 0, is handled
similarly). Since

(xn+1,−yn+1) + (xn, yn) + (t, 1) = O,

the three summands on the left hand side are collinear, so

1− (−yn+1) =
1− yn
t− xn

(t− xn+1),

so from the assumption xn+1

t |∞ = 0, we get

0 = yn+1|∞ =

(
1− yn
1− xn

t

(
1− xn+1

t

)
− 1

)∣∣∣∣
∞
,

and thus
1− yn
1− xn

t

∣∣∣
∞

= 1.

From

xn+1 = λ

(
1− yn
t− xn

)2

− t− xn,

we get

0 =
xn+1

t

∣∣∣
∞

=

(( 1− yn
1− xn

t

)2(
1 +

a

t2
+
b

t3

)
− 1− xn

t

)∣∣∣∣
∞

= −xn
t

∣∣∣
∞
6= 0,

a contradiction.
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Proof of the Basic Identity: If Pn = O, then this is trivial. If Pn−1 = O, then

xn+1 = x(2 · (t, 1)) =
(3t2 + a)2

4(t3 + at+ b)
− 2t =

t4 +O(t3)

4(t3 + at+ b)
,

and since ∆ 6= 0 we know that 3t2 + a has no common factor with t3 + at+ b, so dn+1 = 4, and the
identity holds in this case (as we trivially have dn−1 = 0, dn = 1). The case Pn+1 = O is identical,
so we may assume from here on that none of Pn−1, Pn, Pn+1 are O.

Computing xn−1, we have

xn−1 = λ
(yn + 1

xn − t

)2
− (xn + t) =

λ(yn + 1)2 − (xn + t)(xn − t)2

(xn − t)2

=
x3
n + axn + b+ t3 + at+ b− (xn + t)(xn − t)2 + 2λyn

(xn − t)2

=
(xn + t)(txn + a) + 2b+ 2λyn

(xn − t)2

=
(fn + tgn)(tfn + agn) + 2bg2

n + 2λyng
2
n

(fn − tgn)2
=:

R

(fn − tgn)2
,

say. From
(λyng

2
n)2 = λg4

n(x3
n + axn + b) = λgn(f3

n + afng
2
n + bg3

n) ∈ Fq[t],
we get λyng

2
n ∈ Fq[t] (by the rational root theorem), so R ∈ Fq[t]. A similar calculation gives

xn+1 = S
(fn−tgn)2

, where

S = (fn + tgn)(tfn + agn) + 2bg2
n − 2λyng

2
n.

Since xn−1 and xn+1 differ only in the sign of 2λyn, we can apply the difference of squares formula
to see

xn−1xn+1 =
((xn + t)(txn + a) + 2b)2 − 4(t3 + at+ b)(x3 + ax+ b)

(xn − t)4

=
((x3 + ax+ t3 + at− (xn + t)(xn − t)2) + 2b)2 − 4(t3 + at+ b)(x3 + ax+ b)

(xn − t)4

=
((xn + t)(txn + a))2 − (2t2xn + 2axn)(2tx2

n + 2at)− 4b(xn + t)(xn − t)2

(xn − t)4

=
(txn − a)2 − 4b(xn + t)

(xn − t)2

=
(tfn − agn)2 − 4bgn(fn + tgn)

(fn − tgn)2
=:

T

(fn − tgn)2

=
t2f2

n +O(tf2
n)

(fn − tgn)2
.

Noting that T has degree 2dn + 2 (by the last line, which implicitly used the Lemma), we just have
to show that no extra cancellation occurs. Since RS = (fn − tgn)2T , there must exist r, s ∈ Fq[t]
such that r | R, s | S, and rs = (fn − tgn)2. Thus we have

fn−1

gn−1
=

R

(fn − tgn)2
=
R/r

s
,
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and similarly fn+1

gn+1
= S/s

r , and of course (R/r)(S/s) = T . Thus we just have to show that R/r and

s have no common factor, and that S/s and r have no common factor. If not, then (in either case)
any irreducible common factor must divide R,S, T , and fn − tgn, so it divides

gcd(fn − tgn, R, S, T ) = gcd(fn − tgn, 2λ(1 + yn)g2
n, 2λ(1− yn)g2

n, ((t
2 − a)2 − 8bt)gn)

| gcd(2λ(1 + yn), 2λ(1− yn), (t2 − a)2 − 8bt) gcd(fn − tgn, gn)2

= gcd(t3 + at+ b, t4 − 2at2 − 8bt+ a2)

= gcd(t3 + at+ b, 9t4 + 6at2 + a2)

= gcd(t3 + at+ b, (3t2 + a)2) = 1,

(since ∆ 6= 0), which is a contradiction.

What’s really going on in this proof: In a follow up paper by Chahal [3], the following high
level explanation of Manin’s argument is given, and used to derive a similar elementary proof in
characteristic 2.

Suppose we are given an elliptic curve E over a field k. By taking a quotient of the first
projection map π1 : E × E → E, we get a map E × E/(−1,−1) → E/(−1) ∼= P1. Taking the
generic fiber of this map gives Etw → Spec k(t), where Etw is a twist of E which trivializes over
the degree 2 extension k(E)/k(t). Thus

Etw(k(E)) ∼= E(k(E)) ∼= Mork(E,E),

and
Etw(k(t)) ∼= {φ ∈ Mork(E,E) | φ ◦ (−1) = (−1) ◦ φ}.

Thus the maps 1 and Frob (as well as all the other isogenies of E) correspond to k(t) points on
Etw, and the degree of an isogeny should correspond to a näıve height of the corresponding point
on Etw.

2.2 Aside: binomial coefficients, Jacobi sums, and trinomial plane curves

2.2.1 Chevalley-Warning trick

How many mod-p points are there on the curve xm + yn = k? We can compute the number of
points on this curve mod p by following the proof of Chevalley-Warning and seeing how badly it
fails:

6



#{(x, y) ∈ F2
p | xm + yn = k} ≡

∑
x,y∈Fp

1− (xm + yn − k)p−1

≡ −
∑
x,y∈Fp

∑
a+b+c=p−1

(
p− 1

a, b, c

)
xamybn(−k)c

≡ −
∑

a+b+c=p−1

kc
(
p− 1− c

a

) ∑
x,y∈Fp

xamybn

≡ −
∑

a+b+c=p−1
a,b>0

p−1|am,bn

kc
(
p− 1− c

a

)
(mod p).

Note that the number of summands depends only on m and n, and the number of summands
which are not trivially congruent to ±1 is

(m− 1)(n− 1)− (gcd(m,n)− 1)

2
,

which is precisely the geometric genus of the plane curve xm + yn = k (as one can easily check
with the Riemann-Hurwitz formula). A similar calculation applies to any plane curve defined by
an equation involving three monomials whose exponent vectors are affinely independent.

Example 1. Applying this to the genus 1 curve y2 = x3 + k, we see that when p ≡ 1 (mod 6) we
have

#{(x, y) ∈ F2
p | y2 = x3 + k} ≡ −k

p−1
6

(5(p−1)
6
p−1

3

)
≡ p− k

p−1
6

(p−1
2
p−1

3

)
(mod p).

Suppose p > 16, so that p > 4
√
p. Letting w be a solution to w2 +w + 1 ≡ 0 (mod p), and letting

a be the least (in absolute value) remainder of
(p−1

2
p−1

3

)
mod p and b be the least (in absolute value)

remainder of w
(p−1

2
p−1

3

)
mod p, we see from the Hasse bound that |a|, |b|, |a+ b| < 2

√
p. From this we

easily conclude that

p | a2 + ab+ b2 =
a2 + b2 + (a+ b)2

2
< 4p,

so a2 + ab + b2 is either p, 2p, or 3p. Since the number of points on the curve y2 = x3 + k is
congruent to 2 modulo 3 whenever k is a quadratic residue mod p, we see that both a and b are
congruent to 2 modulo 3, so we must have a2 + ab+ b2 = 3p. Similarly, since the number of points
on y2 = x3 + k is odd exactly when k is a cubic residue mod p, we see that a is even and b is odd.
Thus, setting A = a

2 and B = a+2b
6 , we have A,B ∈ Z,

A2 + 3B2 = p, A ≡ 1 (mod 3),
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and (p−1
2
p−1

3

)
≡ 2A (mod p).

Example 2. Similar reasoning applied to the curve y2 = x4 + k (or alternatively to the curve
y2 = x3 − kx) shows that if p ≡ 1 (mod 4) then there are integers a, b such that

a2 + b2 = p, a ≡ 1 (mod 4),

and (p−1
2
p−1

4

)
≡ 2a (mod p).

Remark 1. Trying the same approach with the elliptic curve y2 = x3 + x+ k, we get

#{(x, y) ∈ Fp | y2 = x3 + x+ k} ≡ −
∑

p−1
4 ≤n≤

p−1
3

k2n−p−1
2

( p−1
2

n, p− 1− 3n, 2n− p−1
2

)
(mod p).

Considering the right hand side as a polynomial in k, we see that it has degree at most p−1
6 and

always takes values in (−2
√
p, 2
√
p) + pZ. Out of curiosity, I tried factoring these polynomials (in

Fp[k]) for p up to 3000, and found that they always seem to split into a product of factors of degrees
1, 2, and 4 - can anyone explain this?

2.2.2 Jacobi sums and binomial coefficients

Definition 1. Let p be a prime and let χ be any Dirichlet character modulo p. Define the Gauss
sum g(χ) to be

g(χ) =

p−1∑
j=0

χ(j)e2πij/p.

Proposition 1. If χ is a nontrivial Dirichlet character mod p, then |g(χ)| = √p and g(χ)g(χ) =
χ(−1)p. If χ is the real quadratic character, then g(χ) is either

√
p or i

√
p depending on whether

p is 1 or −1 modulo 4.

Definition 2. Let p be a prime and let χ, ψ be any two Dirichlet characters modulo p. Define the
Jacobi sum J(χ, ψ) to be

J(χ, ψ) =

p−1∑
j=0

χ(j)ψ(1− j).

Proposition 2. If χ, ψ are Dirichlet characters mod p such that χψ is nontrivial, then

J(χ, ψ) =
g(χ)g(ψ)

g(χψ)
.

Let n be a positive integer, write ζn = e2πi/n, and let p be a prime with p ≡ 1 (mod n).
From the existence of primitive roots modulo p, we see that there are ϕ(n) congruence classes z
(mod p) with ordp(z) = n. Picking one of these congruence classes, we can define the prime ideal
P = (p, ζn − z) of Z[ζn]. Note that every element of Z[ζn] is congruent to an element of Z modulo
P , i.e. Z[ζn]/P = Z/p, and that Nm(P ) = p.

8



Definition 3. Let P be a prime ideal of Z[ζn] which does not divide n, and let a be any element
of Z[ζn]. Define the nth power residue symbol of a on P by( a

P

)
n
≡ a

Nm(P )−1
n (mod P )

and ( a
P

)
n
∈ {0, 1, ζn, ζ2

n, ..., ζ
n−1
n }.

Theorem 2 (Theorem 5.1 of [6]). Let n, p, P be as above, so p ≡ 1 (mod n) and P is a prime ideal
of Z[ζn] lying over p. Let χn be the Dirichlet character mod p defined by χn(a) = ( aP )n. Then for
any 0 < k, l < n we have (k(p−1)

n
l(p−1)
n

)
≡ (−1)

l(p−1)
n

+1J(χkn, χ
n−l
n ) (mod P ).

Proof. From χn(a) ≡ a
p−1
n (mod P ), we have

J(χn−ln , χkn) =

p−1∑
j=0

χn(j)n−lχn(1− j)k

≡
p−1∑
j=0

jp−1− l(p−1)
n (1− j)

k(p−1)
n

=

p−1∑
j=0

jp−1− l(p−1)
n

∑
m

(k(p−1)
n

m

)
(−j)m

=
∑
m

(−1)m
(k(p−1)

n

m

) p−1∑
j=0

jp−1+m− l(p−1)
n

≡ −(−1)
l(p−1)
n

(k(p−1)
n

l(p−1)
n

)
(mod P ).

Example 3. Take n = 4, and let p be a prime which is 1 (mod 4). Writing p = a2 + b2 with a ≡ 1
(mod 4), let P = (a + bi). Define the Dirichlet character χ4 by χ4(k) = ( k

a+bi)4, and let χ2 = χ2
4

be the quadratic character mod p. Then

J(χ2, χ4) ≡ −
(p−1

4
p−1

2

)
= 0 (mod P )

and

J(χ2, χ4) = J(χ2, χ
3
4) ≡ (−1)

p−1
4

+1

(p−1
2
p−1

4

)
(mod P ),

so

Tr(J(χ2, χ4)) ≡ (−1)
p−1
4

+1

(p−1
2
p−1

4

)
(mod p).
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From |J(χ2, χ4)| = √p and (a + bi) | J(χ2, χ4), we see that J(χ2, χ4) = ik(a + bi) for some k. By
computing J(χ2, χ4) modulo 4, one can show that in fact we have

J(χ2, χ4) = (−1)
p−1
4

+1(a+ bi),

giving us a second proof of the congruence(p−1
2
p−1

4

)
≡ 2a (mod p).

3 Weil’s argument for diagonal hypersurfaces

This section follows Weil’s paper [8]. Let q be a power of a prime p. Let a0, ..., ar ∈ F×q and let
n0, ..., nr ∈ N+. We want to count

N = #{(x0, ..., xr) ∈ Fr+1
q | a0x

n0
0 + · · ·+ arx

nr
r = 0}.

Set di = gcd(ni, q − 1).
The plan is to use Fourier analysis, so the first step is to pick additive and multiplicative

characters.

Definition 4. Define ψq : Fq → C× by

ψq(a) = e
2πiTrFq/Fp (a)

p .

Proposition 3. The character ψq is not identically equal to 1, and every additive character of Fq
can be written as a 7→ ψq(ca) for some c ∈ Fq.

Proof. This follows immediately from Artin’s theorem on the linear independence of characters.

Definition 5. Fix once and for all an injective multiplicative map φ : F×q → C×. For α ∈ Q/Z
and n ∈ N such that (qn − 1)α ≡ 0 (mod 1), define χα,n : F×qn → C× by

χα,n(x) = φ(x)(qn−1)α.

Extend this to Fqn by

χα,n(0) =

{
0 α 6≡ 0 (mod 1),

1 α ≡ 0 (mod 1),

and set χα = χα,1.

Proposition 4. If (q − 1)α ≡ 0 (mod 1), then χα,n(x) = χα(NmFqn/Fq(x)).

Proof.

χα,n(x) = φ(x)(qn−1)α = (φ(x)(q−1)α)q
n−1+···+1 = χα(xq

n−1+···+1) = χα(NmFqn/Fq(x)).

Proposition 5. If d = gcd(n, q − 1) and u ∈ Fq then number of x ∈ Fq such that xn = u is∑
dα≡0 (mod 1) χα(u).

10



From this we see that

N =
∑

α=(α0,...,αr)
diαi≡0 (mod 1)

∑
u=(u0,...,ur)∑

aiui=0

χα0(u0) · · ·χαr(ur)

= qr +
∑

α=(α0,...,αr)
0<αi<1

diαi≡0 (mod 1)

χα0(a−1
0 ) · · ·χαr(a−1

r )
∑

u0+···+ur=0

χα0(u0) · · ·χαr(ur),

where the second equality follows from the fact that the inner sum is 0 if some but not all of the
αi are 0 (mod 1). For 0 < α0 < 1, we can simplify the inner sum further by restricting to u0 6= 0
and setting ui = u0vi:∑
u0+···+ur

χα0(u0) · · ·χαr(ur) =
∑
u0 6=0

χα0+···+αr(u0)
∑

1+v1+···+vr=0

χα1(v1) · · ·χαr(vr)

=

{
0 α0 + · · ·+ αr 6≡ 0 (mod 1),

(q − 1)
∑

1+v1+···+vr=0 χα1(v1) · · ·χαr(vr) α0 + · · ·+ αr ≡ 0 (mod 1).

Definition 6. For α = (α0, ..., αr) with α0 + · · ·+ αr ≡ 0 (mod 1), define the Jacobi sum j(α) by

j(α) =
1

q − 1

∑
u0+···+ur

χα0(u0) · · ·χαr(ur)

=
∑

1+v1+···+vr=0

χα1(v1) · · ·χαr(vr).

In terms of the Jacobi sums, we have

N = qr + (q − 1)
∑

α0+···+αi≡0 (mod 1)
diαi≡0 (mod 1)

0<αi<1

χα0(a−1
0 ) · · ·χαr(a−1

r )j(α).

Note that the number of summands is bounded by a constant which depends only on r and d0, ..., dr.
In order to evaluate the Jacobi sums, we will use Gauss sums.

Definition 7. If χ : Fq → C is a multiplicative character, then the Gauss sum g(χ) is

g(χ) =
∑
x∈Fq

χ(x)ψq(x).

Proposition 6. If χ 6= χ0 then |g(χ)| = √q, g(χ)g(χ) = χ(−1)q, and g(χ0) = 0. For χ 6= χ0, we
have

χ(t) =
g(χ)

q

∑
x∈Fq

χ(x)ψq(tx).

Proof. The first statement is easy. For the second, note that for any t 6= 0 we have

q

g(χ)
= g(χ) = χ(t)

∑
x∈Fq

χ(x)ψq(tx).

11



Proposition 7. If α = (α0, ..., αr) with α0 + · · ·+ αr ≡ 0 (mod 1), then

j(α) =
g(χα0) · · · g(χαr)

q

and |j(α)| = q
r−1
2 .

Proof. Expanding out each χαi(ui) in the definition of j(α), we get

(q − 1)j(α) =
g(χα0) · · · g(χαr)

qr+1

∑
x0,...,xr

χα0
(x0) · · ·χαr(xr)

∑
u0+···+ur=0

ψq(x0u0 + · · ·+ xrur),

and the inner sum is 0 unless x0 = · · · = xr, in which case it is qr.

Next we want to understand how N changes when we replace Fq with Fqν . The main difficulty
is understanding what happens to Gauss sums.

Theorem 3 (Davenport, Hasse). If (q − 1)α ≡ 0 (mod 1), then −g(χα,ν) = (−g(χα))ν .

Proof. For F (x) = xn + c1x
n−1 + · · ·+ cn ∈ Fq[x] monic, set

λα(F ) = χα(cn)ψq(c1).

Note that λα(F1F2) = λα(F1)λα(F2), so by unique factorization for polynomials in Fq[x] we have∑
F∈Fq [x] monic

λα(F )T degF =
∏

P∈Fq [x] irred.

(1− λα(P )T degP )−1,

and the left hand side is easily seen to be equal to 1 + g(χα)T . Defining λα,ν for functions in Fqν [x]
similarly, we have

1 + g(χα,ν)T =
∏

P ′∈Fqν [x] irred.

(1− λα,ν(P ′)T degP ′)−1.

Suppose that P (x) = xn+ bxn−1 + · · ·+a is irreducible in Fq[x] and P ′(x) = xn
′
+ b′xn

′−1 + · · ·+a′

is an irreducible factor of P (x) in Fqν [x]. Then by Galois theory we have n′ = n
(n,ν) and

λα,ν(P ′) = χα,ν(a′)ψqν (b′)

= χα(NmFqν /Fq(a
′))ψq(TrFqν /Fq(b

′))

= χα
(
a

ν
(n,ν)

)
ψq
(

ν
(n,ν)b

)
= λα(P )

ν
(n,ν) .

Thus we have ∏
P ′|P

(1− λα,ν(P ′)T ν degP ′)−1 = (1− λα(P )T
nν

(n,ν) )−(n,ν)

=

ν−1∏
a=0

(1− λα(P )(e
2πia
ν T )n)−1,

12



so

1 + g(χα,ν)T ν =

ν−1∏
a=0

∏
P∈Fq [x] irred.

(1− λα(P )(e
2πia
ν T )degP )−1

=

ν−1∏
a=0

(1 + g(χα)e
2πia
ν T )

= 1− (−g(χα))νT ν .

Now we restrict to the special case n0 = · · · = nr = n, and set

Nν = #{[x0 : · · · : xr] ∈ PrFqν | a0x
n
0 + · · ·+ arx

n
r = 0}.

From the formula we derived for N , we have

Nν =
Nν

qν − 1
= q(r−1)ν + · · ·+ qν + 1 +

∑
α0+···+αr≡0 (mod 1)
(n,qν−1)αi≡0 (mod 1)

0<αi<1

χα0,ν(a0) · · ·χαr,ν(ar)jν(α).

We want to compute the generating function exp(
∑

ν≥1Nν
T ν

ν ) (this is the zeta function of the
diagonal hypersurface in Pr given by a0x

n
0 + · · ·+ arx

n
r = 0). Setting

µ(α) = min{µ | (qµ − 1)α ≡ ~0 (mod 1)},

we have

exp

(∑
ν≥1

Nν
T ν

ν

)
=

1

(1− T )(1− qT ) · · · (1− qr−1T )

∏
α0+···+αr≡0 (mod 1)
(n,qν−1)αi≡0 (mod 1)

0<αi<1

(1− C(α)Tµ(α))
(−1)r

µ(α) ,

where
C(α) = (−1)r+1χα0,µ(α)(a0) · · ·χαr,µ(α)(ar)jµ(α)(α),

and |C(α)| = q
(r−1)µ(α)

2 . Furthermore, we have C(qα) = C(α) since aqi = ai, µ(qα) = µ(α), and
jµ(α)(qα) = jµ(α)(α), so by grouping the terms in the product corresponding to α, qα, ..., qµ(α)−1α
we see that in fact the zeta function of our diagonal hypersurface is a rational function of T .

Furthermore, either the last product or its inverse is a polynomial with integer coefficients (since
j(α), being a sum of roots of unity, is always an algebraic integer), and the degree of this polynomial
is the number of tuples (α0, ..., αr) such that 0 < αi < 1 for all i, each αi has denominator dividing
n and coprime to p, and α0 + · · · + αr ≡ 0 (mod 1). Since α0 is determined by α1, ..., αr, we see
that the number of such tuples is

(n− 1)r − ((n− 1)r−1 − · · · ) =
(n− 1)((n− 1)r − (−1)r)

n

if n is relatively prime to p.
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4 Ho Chung’s notes on rationality of the zeta function for curves

4.1 Introduction

So one goal of the seminar is to perhaps give bounds of sum of trace functions on a variety.

4.1.1 Some examples of what we care about

Example 4 (Gauss sum for Dirichlet characters mod p). We want to understand the size of

τ(χ) =
∑

a∈A1(Fp)

χ(a)e

(
a

p

)

for a non-trivial multiplicative character χ : F∗p → C, extending to domain Fp by zero.
This is a classical Gauss sum, where it is known that |g(χ)| = √p.

Example 5 (Kloosterman sums). We want to understand the size of

S(a, b; p) =
∑

x∈(A1−0)(Fp)

e

(
ax+ bx

p

)

for a, b ∈ F∗p. Here x means multiplicative inverse of x mod p.
Here Weil bound says that

|S(a, b; p)| ≤ 2
√
p

so we do attain square-root cancellation.

Example 6 (Hasse-Weil). We want to understand the size of

|#E(Fp)− p− 1|

for an elliptic curve E : y2 = f(x) with f(x) = x3 + ax+ b over Fp.

Note that the number of solutions of x2 ≡ a mod p equals 1+

(
a

p

)
. Thus, after first subtracting

off the point at infinity,

|#E(Fp)− p− 1| =

∣∣∣∣∣∣
∑

x∈A1(Fp)

(
1 +

(
x3 + ax+ b

p

)
− p
)∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

x∈A1(Fp)

(
x3 + ax+ b

p

)∣∣∣∣∣∣
Here Hasse-Weil bound says that

|#E(Fp)− p− 1| ≤ 2
√
p

It can be considered a square-root cancellation type result for the functions χ(f(x)) where χ is the
Legendre symbol/non-trivial quadratic character for F∗p.
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4.1.2 The general setup

The most general set up here would be What is
the most
general
setup
here; how
to unify
the mul-
tiplicative
characters
and the
additive
charac-
ters?

What is
the most
general
setup
here; how
to unify
the mul-
tiplicative
characters
and the
additive
charac-
ters?

Extremely
sketchy
START

Extremely
sketchy
START

• Let k = Fq be a finite field Consider any separated scheme X/k of finite type, any constructible
Ql-sheaf F on X, any finite extension E/k. For any x ∈ X(E), denote

FrobE,x(F)

the action of geometric Frobenius FrobE ∈ Gal(E/E) on the pullback F to Spec(E) by the
point x ∈ X(E) viewed as a map Spec(E)→ X. Write

tF (E, x) = Tr(FrobE,x |F)

In other words, tF (E, x) is the trace of FrobE action on the stalk Fx. A simplified but good What
is con-
structible
sheaf, lo-
cal sys-
tem,...

What
is con-
structible
sheaf, lo-
cal sys-
tem,...

enough case would be X/k is quasi-projective, F is locally constant (synonym: lisse) sheaf
on X.

• We have a version of Lefschetz trace formula here:∑
x∈X(E)

tF (E, x) =
∑
i

(−1)i Tr
(
FrobE |H i

c(X ⊗k k,F
)

• Deligne’s work (seems to be mainly Weil II, Theorem 3.3.1) buys us something of the sort

– There are generally hard Lefschetz type result on cohomology; and in special cases
concentration of cohomology results, that roughly says most of the cohomology groups
(say, all but the middle one) vanish.

– The dimension of the nonvanishing cohomology group can be written down.

– Purity result - The cohomology groups are mixed with some weight in general; pure with
some weight in nice cases. A cohomology group being pure of weight n means that all
eigenvalues of Frobk acting on this cohomology has complex absolute value |k|n/2, once
you fixed the isomorphism between Ql

∼= C.

Triangle inequality then gives us square cancellation we look for.

• Fouvry, Kowalski, Michel et al’s work seems to focus on the case X being a dense open subset
of P1, and E = k so far.

Execution
of this
plan for
the three
examples

Execution
of this
plan for
the three
examples

Extremely
sketchy
END

Extremely
sketchy
END

4.2 Zeta function for varieties over Fq
It does not hurt to replace all the ”scheme of finite type” below with ”quasi-projective variety”
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4.2.1 Two definitions of zeta function

Lemma 1. Let X be a scheme of finite type over Fq. Then

#X(Fqn) ≤ O
(
qn·dimX

)
as n→∞

Proof. Without loss of generality, assume that X is affine and integral. Then the result follows
from Noether normalization.

Definition 8 (Local zeta function). Let X be a scheme of finite type over Fq. Define the local
zeta function to be

Z (X/Fq, T ) = exp

( ∞∑
n=1

#X(Fqn)
Tn

n

)
∈ Q[[T ]]

Say a
word on
what
X(Fqn)
is, closed
point etc
for an-
alytic
number
theorist in
audience

Say a
word on
what
X(Fqn)
is, closed
point etc
for an-
alytic
number
theorist in
audience

Remark 2. The previous lemma implies that Z(X, q−s) converges to a holomorphic function on
<s > dimX.

Example 7 (A0 = Spec(Fq)). For each n there is only one point for A0(Fqn), which is already
rational over Fq. Thus the zeta function is

Z(A0/Fq, T ) = exp

( ∞∑
n=1

Tn

n

)
= exp (− log(1− T )) =

1

1− T
∈ Z[[T ]]

which corresponds to the Euler factor of ζ(s) once we substitute T = p−s. In general, the Euler
factor of Dedekind zeta function can be obtained in the same way.

Example 8 (Ak). Clearly #Ak(Fqn) = (qn)k = qkn. Thus the zeta function is

Z(Ak/Fq, T ) = exp

( ∞∑
n=1

qkn
Tn

n

)
= exp

(
− log(1− qkT )

)
=

1

1− qkT
∈ Z[[T ]]

Example 9 (Pk). Clearly
#Pk(Fqn) = (qn)k + (qn)k−1 + · · ·+ 1

Thus the zeta function is

Z(Pk/Fq, T ) = exp

( ∞∑
n=1

(qkn + · · ·+ 1)
Tn

n

)
= exp

(
−

k∑
i=0

log(1− qiT )

)
=

k∏
i=1

1

1− qiT
∈ Z[[T ]]

Here is another way of writing down the local zeta function.

Proposition 8. Let X be a quasi-projective variety Fq. For each closed point x we define deg(x)
to be the degree of the extension kX,x/Fq. Then

Z(X/Fq, T ) =
∏
x∈|X|

(
1− T deg(x)

)−1

We ignore convergence issues as we are merely considering formal power series.
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Proof. When we count #X(Fqn), separate the counting for each x ∈ |X| and use the fact that a
closed point x ∈ |X| will show up in X(Fqn) if and only if deg(x)|n.

Corollary 1. We actually have Z(X/Fq, T ) ∈ Z[[T ]].

Remark 3. Note also that

Z(X/Fq, q−s) =
∏
x∈|X|

(
1− |kX,x|−s

)−1

This can be used as a definition of (global) zeta function for scheme of finite type over Z. In this
set up the above proposition may be regarded as the analogue (in the local case) of Euler product
factorization for Riemann zeta function.

Proposition 9 (Properties of local zeta functions).

• If C ↪→ X is a closed subscheme, U = X − C an open subscheme of X, then

Z(X,T ) = Z(C, T )Z(U, T )

• If X is reduced, X = X1 ∪X2 is a union of two closed subschemes, and X1 ∩X2 is equipped
with reduced induced subscheme structure, then

Z(X,T ) =
Z(X1, T )Z(X2, T )

Z(X1 ∩X2, T )

These two properties are useful in doing reduction arguments. For example, to prove rationality
of zeta function, these properties reduce it to the case where X is affine and integral, which is
birational to an irreducible hypersurface in AFqn .

• If X is defined over Fq, then

Z(X ×Fq Fqr , T r) =
r∏
i=1

Z(X, ξirT )

where ξr is a primitive r-th root of unity.

4.2.2 Statement of Weil conjectures

The properties of this local zeta function was conjectured by Weil and proved by Deligne.

Theorem 4 (Deligne). For a smooth, projective, geometrically irreducible variety X/Fq we have,

(Rationality) Z(X/Fq, T ) is a rational function in T . If dimX = n we can write it as

Z(X/Fq, T ) =
P1(T )P3(T ) · · ·P2n−1(T )

P0(T )P2(T ) · · ·P2n(T )

where each Pi(T ) has integral coefficients with leading coefficient 1.
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(Functional equation) Define χ = χ(X) =
∑

i(−1)ideg(Pi). We have

Z

(
X,

1

qnT

)
= εqnχ/2TχZ(X,T )

Here the root number ε is defined as follows.

ε =

{
(−1)χ if n is odd

(−1)χ if n is even and ground field Fq is large enough

FIX:
What is
the ex-
act root
number

FIX:
What is
the ex-
act root
number

(Riemann Hypothesis) We can pin down P0(T ) = 1− T and P2n(T ) = 1− q2nT . For 1 ≤ i ≤ 2n− 1,

Pi(T ) =
∏
j

(1− αi(j)T )

with |αi(j)| = qi/2 for every archimedean place of Q(αi(j)) ↪→ C.

4.3 The case of curves

In this section, we will show rationality/functional equation of the zeta function via Riemann-Roch.
For the Riemann hypothesis, there is also an elementary approach due to Bombieri-Stepanov.

4.3.1 Divisors on curves

Let k = Fq and X/k be a smooth, projective, geometrically irreducible curve. We use X = Xk to
denote its base change to k.

• A divisor
D =

∑
x∈|X|

nx · x

is a formal finite linear combination of closed points of X, with integer coefficients nx. An
effective divisor is one where each nx ≥ 0 - we use the notation D ≥ 0 to denote effectiveness.

• Div(X) is the set of divisors.

• The degree of a divisor D =
∑
x∈|X|

nx · x is

deg(D) :=
∑
x∈|X|

nx · deg(x)

• Let k(X) be the field of rational functions of X over k. For f ∈ k(X), we can define the
order of zeros/poles of f at each closed point. (Smoothness gives you a local uniformizer at
each closed point). Denote the order of f at closed point x by ordx(f). We can then define
the principal divisors

div(f) =
∑
x∈|X|

ordx(f)x

Since X is projective, deg(div(f)) = 0 for all f ∈ k(X).
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4.3.2 Picard group

• We define an equivalence relation on divisors: D ∼ D′ iff D = D′+div(f) for some f ∈ k(X).
The Picard group is then defined as

Pic(X) = Div(X)/ ∼

• Degree map descends so we can define

Pic(X) = Div(X)/ ∼ deg−−→ Z

Define Pic0(X) to be the kernel of this map.

4.3.3 Section of line bundles

• For any divisor D on X, define

L(D) = {f ∈ k(X) : div(f) +D ≥ 0}

which is a k-vector space. We also use l(D) to denote the dimension of l(D) as a k-vector
space. Clearly l(D) ≥ 0. It is also finite - this can be considered part of Riemann-Roch.

• Note that
deg(div(f) +D) = deg(div(f)) + deg(D) = deg(D)

So if deg(D) < 0, so that some coefficients of D is negative, L(D) = ∅ and l(D) = 0.

4.3.4 Riemann-Roch

Theorem 5 (Riemann-Roch + Serre Duality). There is a canonical divisor K on X such that for
any divisor D on X, we have

l(D)− l(K −D) = deg(D) + 1− g

where g := l(K).

Corollary 2.

• deg(K) = 2g − 2.

• l(D) ≤ deg(D) + 1− g for all divisor D (Riemann’s inequality), and thus is finite.

• If n > 2g − 2, then l(D) = deg(D) + 1− g.

Corollary 3. Implications on Picard group:

• For n > 2g − 2, each equivalence class in Div(n)/ ∼ has a representative by effective divisor.
This follows from Riemann Roch.

• Pic0(X) is finite. Note that from lemma 2.1, for fixed n there are finitely many effective
divisors of degree ≤ n. Last bullet point then implies that Div(n)/ ∼ is finite for all n large.
But these are all cosets for Pic0(X), hence Pic0(X) is also finite.

19



4.3.5 Rationality of zeta function of curves

Let X0/k be a smooth, projective, geometrically irreducible curve over k. We saw that the zeta
function is

Z(X,T ) =
∏
x∈|X|

(
1− T deg(x)

)−1

=
∏
x∈|X|

(1 + T deg(x) + T 2 deg(x) + · · · )

=
∑
D≥0

T deg(D)

=
∞∑
n=0

Tn #{effective divisors of degree n} (?)

The constant term is the number of effective divisors of degree 0, which is 1.
Suppose that the degree map of Picard group maps onto dZ, and let a be a divisor of degree d.

Then,

• If d|n, we see that Div(n)/ ∼ are cosets of Pic0(X). In particular,

|Div(n)/ ∼ | = |Pic0(X)|

• If d - n, Div(n)/ ∼ is empty.

We will eventually show that d = 1 , but for now, (?)is Any di-
rect proof
of this?

Any di-
rect proof
of this?

∞∑
n=0

d|n

Tn #{effective divisors of degree n}

Note that for n > 2g − 2 (and d|n), the degree n effective divisors surjects onto Div(n)/ ∼ (by
our second bullet point in last section.) This means that

#{effective divisors of degree n} =
∑

D∈Div(n)/∼

#{effective divisors of degree n equivalent to D}

=
∑

D∈Div(n)/∼

|P(L(D))|

=
∑

D∈Div(n)/∼

ql(D) − 1

q − 1

Note also that l(D) = n+ 1− g since n > 2g − 2, and that |Div(n)/ ∼| = |Pic0(X)|

= |Pic0(X)|q
n+1−g − 1

q − 1
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Therefore the n > 2g − 2 part in (?) is

∞∑
n=2g−2+d

d|n

Tn|Pic0(X)|q
n+1−g − 1

q − 1
=
|Pic0(X)|
q − 1

 ∞∑
n=2g−2+d

d|n

qn+1−gTn −
∞∑

n=2g−2+d

d|n

Tn


=
|Pic0(X)|
q − 1

(
q1−g (qT )2g−2+d

1− (qT )d
− T 2g−2+d

1− T d

)

and is of the shape
Polynomial in T d

(1− T d)(1− (qT )d)

For the 0 ≤ n ≤ 2g − 2 part of (?), it is clearly a polynomial in T d of degree at most 2g−2
d . In

particular, we get that

Z(X,T ) =
Polynomial in T d

(1− T d)(1− (qT )d)

where the polynomial in numerator has degree at most 2g−2
d + 2. Notice that Z(X,T ) is a rational

function in T d.
We now seek more refined information about d and the numerator of Z(X,T ).

Claim 1. d = 1.

Proof. If ξd is a primitive d-th root of unity, recall that

Z(X ×Fq Fqd , T d) =
d∏
i=1

Z(X, ξidT ) = Z(X,T )d

where the last equality is because Z(X,T ) is rational function in T d as we have shown.
Now same proof (of rationality of zeta) shows that Z(X ×Fq Fqd , T ) has a pole of order 1 at

T = 1, so same is true for Z(X ×Fq Fqd , T d) = Z(X,T )d. But this is impossible unless d = 1.

So far we saw that

Z(X,T ) =
Polynomial in T

(1− T )(1− qT )

with degree of numerator at most 2g. We now show that it is exactly 2g.

• Contribution from n ≥ 2g − 1 term to Z(X,T ) is of the shape:

|Pic0(X)|
q − 1

(
qg
T 2g−1

1− qT
− T 2g−1

1− T

)
=
|Pic0(X0)|
q − 1

· (q − qg)T 2g + (qg − 1)T 2g−1

(1− qT )(1− T )

• Contribution from n ≤ 2g − 2 term to Z(X,T ) is of the shape

T 2g−2#{effective divisors of degree 2g − 2} = T 2g−2
∑

D∈Div(2g−2)/∼
D effective

ql(D) − 1

q − 1
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• For D ∈ Div(2g − 2)/ ∼,

– if D ∼ K, then l(D) = l(K) = g.

– If D 6∼ K, then l(D) = g − 1. This is by Riemann-Roch, and note that as K −D is a
divisor of degree 0 that is not equivalent to 0, we must have l(K −D) = 0.

• This would imply that after we clear the fraction, the leading term in the numerator of
Z(X,T ) will not be cancelled.

Thus we conclude that

Theorem 6 (Rationality of zeta function). For a smooth, projective, geometrically irreducible curve
X over Fq, we have

Z(X,T ) =
P1(T )

(1− T )(1− qT )

where P1(T ) ∈ Z[T ] is of degree 2g.

We mention that functional equation can be argued in a bare-hand way along this line, while
Riemann Hypothesis would be more involved.

4.4 Dwork’s proof for rationality of zeta function for quasi-projective variety
over Fq
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5 Weil bound for curves

5.1 Bombieri-Stepanov

Given a smooth proper curve X over Fq, our strategy is to count the Fq points of X by finding
the points of X = X ×Fq Fq whose coordinates are unchanged by raising them to the qth power.
Algebraically, we are looking for fixed points of frobenius. Since there are several versions of
frobenius, we’ll give a concrete description of the two versions of frobenius we will be using and
how they are different.

Relative frobenius is defined as Fq = (frobenius on X)× (identity on Fq), while absolute frobe-
nius just raises everything to the pth power. What this really means, with an example:

“If (x, y) ∈ X satisfies xq =
√

2, then (x′, y′) = Fq((x, y)) satisfies x′ =
√

2” vs “If (x, y) ∈ X
satisfies xp =

√
2
p
, then (x′, y′) = (xp, yp) satisfies x′ =

√
2.”

So absolute frobenius doesn’t do anything interesting other than change multiplicites of roots
by multiples of p, while relative frobenius changes the coordinates of Fq-points of X. Thus, we
want to count fixed points of relative frobenius.

One of the main tricks in the proof of the Riemann hypothesis is based on the following Lemma,
which, when combined with the rationality of the zeta function, turns asymptotic bounds with poor
implicit constants into more precise bounds.

Lemma 2. If α1, ..., αn ∈ C and c ∈ R+ are such that <(
∑n

i=1 α
k
i ) = O(ck), then for all i we have

|αi| ≤ c.

Proof. Either one can apply the Pigeonhole Principle several times to show that there exist arbitrar-
ily large integers k such that for all i, arg(αi) · k is very close to an element of 2πZ, or alternatively
one can look at the radius of convergence of the power series

∑
k≥0(

∑n
i=1 α

k
i )z

k =
∑n

i=1
1

1−αiz .

Main Idea: Suppose Y/P1 is Galois, that is, that Fq(Y )/Fq(P1) is a Galois extension of
fields, of degree d (so d = |Gal(Y/P1)|). Since Y is proper and of dimension 1, every element of
g ∈ Gal(Y/P1) gives a well defined regular function g : Y → Y which is defined over Fq (a priori,
we only knew that g was a rational function). All but finitely many points x ∈ P1(Fq) have exactly
d preimages in Y (Fq), and these d preimages will be permuted by Gal(Y/P1) (the points with less
than d preimages are the “ramification points”, and the number of ramification points is bounded
by 2d + 2g − 2, where g is the genus of Y ). If x ∈ P1(Fq) and y 7→ x is unramified, then there
exists a unique g ∈ Gal(Y/P1) such that g(y) = Fq(y) (since y and Fq(y) are both preimages of
x = Fq(x)). Thus, we have

1 + q = |P1(Fq)| =
1

|Gal(Y/P1)|
∑
g∈Gal

|Fix(g−1 ◦ Fq on Y )|+O(2d+ 2g − 2).

Although this is good enough for our purposes, we can actually get rid of the error term. We use
the following group theoretic fact: if a group acts on a set, then the expected number of fixed points
of a random element of the group is equal to the number of orbits of the action. We know that
away from a finite collection of points x ∈ P1(Fq), the group Gal(Y/P1) acts transitively on the
preimages of x, and the set of points x such that the action on the preimages of x is not transitive is
easily seen to be open, so it must be empty. Thus, the number of orbits of the action of Gal(Y/P1)
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on the set of preimages of any x ∈ P1(Fq) is always 1, so

1 + q =
1

|Gal(Y/P1)|
∑
g∈Gal

|Fix(g−1 ◦ Fq on Y )|.

The upshot of all this is that if we can get good upper bounds on |Fix(g−1 ◦ Fq on Y )| for any
g ∈ Gal(Y/P1), then we can get decent lower bounds on the same quantity by applying the upper
bounds to |Fix(h−1 ◦ Fq on Y )| for h 6= g (the error terms will get multiplied by |Gal | − 1 in the
process).

For general X/P1, we let Y be the Galois closure of X over P1. Let G = Gal(Y/P1), and let
H = Gal(Y/X). Then a similar argument to the above gives us the formula

|X(Fq)| =
1

|H|
∑
h∈H
|Fix(h−1 ◦ Fq on Y )|.

Then good upper and lower bounds for |Fix(h−1 ◦Fq on Y )| give us good upper and lower bounds
for |X(Fq)|.

Theorem 7 (Bombieri-Stepanov). Suppose X is a proper smooth curve over Fq of genus g, and
let g ∈ Aut(X/Fq). Set ϕ = g−1 ◦ Fq. Assume that q = pα, with α even, and that q > (g + 1)4.
Then

|Fix(ϕ on X)| ≤ 1 + q + (2g + 1)
√
q.

Proof. The general strategy is to show that there is a nonzero function of low degree which vanishes
at every fixed point of ϕ, and we will produce such a function by doing a dimension count, using
the fact that the collection of pth powers of functions forms a vector space. Suppose there is some
x0 ∈ Fix(ϕ) (if there is no such x0 then we are done). We will treat x0 as the “point at infinity” on
X, study functions on X which only have poles at x0, and measure the degree of such a function
by the order of its pole at x0. Formally, we set

Lm = Γ(X,OX(mx0)) ⊆ Fq(X),

so Lm is the collection of functions of degree at most m which only have poles at x0, and we let
lm = dimLm. Recall that Riemann-Roch implies that

m+ 1− g ≤ lm ≤ m+ 1,

and that lm = m+ 1− g if m > 2g − 2. We’ll also set

Lϕm = {f ◦ ϕ | f ∈ Lm}, Lp
µ

l = {fpµ | f ∈ Ll},

the images of Lm and Ll under composition with ϕ and powers of absolute frobenius, respectively.
Since g is an automorphism and Fq has order q, we have

Lm
ϕ−→
≈
Lϕm ↪→ Γ(X,OX(mqx0)) = Lmq, Ll −→≈ Lp

µ

l ⊆ Llpµ .

Lemma 3. If lpµ < q, then Lp
µ

l ⊗Fq L
ϕ
m → Llpµ+mq is injective.

Proof. Look at the Laurent expansion at x0.
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Corollary 4. If lpµ < q, there exists a well-defined map δ : Lp
µ

l · L
ϕ
m → Lp

µ

l · Lm ⊆ Lm+lpµ , given
by

δ :
∑
i

gp
µ

i · (fi ◦ ϕ) 7→
∑
i

gp
µ

i fi.

If lmll > lm+lpµ, then ker δ 6= 0.

Suppose that lpµ < q, lmll > lm+lpµ , and let f =
∑

i g
pµ

i · (fi ◦ϕ) 6= 0 be in the kernel of δ. From
lpµ < q, we see that f is a pµth power, and for x ∈ Fix(ϕ), x 6= x0, we have

f(x) =
∑
i

gi(x)p
µ
fi(ϕ(x)) =

∑
i

gi(x)p
µ
fi(x) = 0,

so
pµ(|Fix(ϕ)| − 1) ≤ #zeroes of f ≤ lpµ +mq,

since every root of f occurs with multiplicity at least pµ. Dividing by pµ, this becomes

|Fix(ϕ)| ≤ l +m
q

pµ
+ 1.

Now we just need to choose values of l,m, µ in order to get a good bound. We take pµ =
√
q,m =√

q + 2g, l = g + 1 + b g
g+1

√
qc:

• lpµ < q is the same as l <
√
q, which follows from g + 1 <

√
q

g+1 .

• To check that lllm > lm+lpµ , note that ll ≥ l+1−g, lm ≥ m+1−g, and lm+lpµ = m+lpµ+1−g,
so we just need to check that (l−g)(m+1−g) > lpµ = l

√
q, or equivalently l(m+1−q−√q) >

g(m+ 1− g). Simplifying, this becomes l(g + 1) > g(
√
q + g + 1), or l > g

g+1

√
q + g.

• Finally, we get

|Fix(ϕ)| ≤ g + 1 + b g

g + 1

√
qc+

√
q(
√
q + 2g) + 1

≤ q + (2g + 1)
√
q + 1− (

√
q

g+1 − (g + 1)).

5.2 Improvements to the Weil bound

This section follows Schoof’s exposition [7]. Recall that for a proper smooth curve X/Fq of genus
g, the zeta function attached to X is rational, of the form

Z(X,T ) =
PX(T )

(1− T )(1− qT )
,

where PX(T ) has integral coefficients and constant term 1, and Z(X,T ) satisfies the functional
equation

Z
(
X,

1

qT

)
= q1−gT 2−2gZ(X,T ).

Thus the leading coefficient of PX(T ) is qg, and

PX(T ) =

2g∏
i=1

(1− αiT )
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for some algebraic integers αi. From the functional equation, we see that for factor 1 − αiT of
PX(T ) there must be a corresponding factor 1− q

αi
T with the same multiplicity. Together with the

fact that there are an even number of αis and that their product is qg, we see that we can arrange
the αis such that αg+i = q

αi
for i = 1, ..., g. The Riemann Hypothesis for X (proved in the last

subsection) then gives us |αi| =
√
q, so αg+i = αi. This gives us the following explicit formula,

valid for all d ∈ N:

|X(Fqd)| = qd + 1−
g∑
i=1

(αdi + αdi ),

where each αi is an algebraic integer such that the absolute value of any conjugate of αi is
√
q.

Theorem 8 (Hasse-Weil-Serre). |X(Fq)| ≤ q + 1 + b2√qcg.

Proof. Set xi = b2√qc + 1 + αi + αi. Then each xi is a totally positive algebraic integer, so∏g
i=1 xi ≥ 1, and then by the AM-GM inequality we have

∑g
i=1 xi ≥ g.

When the genus is very large compared to q, strange things start to happen. In this case, the
lower bound on the number of points becomes trivial, and the upper bound becomes much smaller

than expected. The following bound becomes better than the Weil bound once g ≥ q−√q
2 .

Theorem 9 (Ihara). |X(Fq)| ≤ q + 1 +
(√

2q + 1
4 + q2−q

g − 1
2

)
g.

Proof. Set ti = αi + αi. Then by the explicit formula,

|X(Fq)| ≤ |X(Fq2)| = q2 + 1−
g∑
i=1

(α2
i + α2

i ) = q2 + 1 + 2qg −
g∑
i=1

t2i ,

and by the Cauchy-Schwarz inequality the right hand side is

≤ q2 + 1 + 2qg − 1

g

( g∑
i=1

ti

)2
= q2 + 1 + 2qg − 1

g

(
|X(Fq)| − q − 1

)2
.

Rearranging and multiplying by g, we have(
|X(Fq)| − q − 1

)2
+ g
(
|X(Fq)| − q − 1

)
≤ (q2 − q)g + 2qg2,

and completing the square finishes the proof.

Oeserlé Method: Set ωi = αi√
q , so |ωi| = 1. Then from the explicit formula, we get

|X(Fq)|q−
d
2 ≤ |X(Fqd)|q

−d2 = q
d
2 + q−

d
2 −

g∑
i=1

(ωdi + ωdi ).

Multiplying these inequalites by nonnegative constants c1, c2, ... and adding them together, we get

|X(Fq)|λ(q−
d
2 ) ≤ λ(q

d
2 ) + λ(q−

d
2 )−

g∑
i=1

(λ(ωi) + λ(ωi)),
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where

λ(t) =
∞∑
d=1

cdt
d.

Letting f(t) = 1 + λ(t) + λ(1
t ), we see that as long as the cds are chosen such that f(t) ≥ 0 for all

t with |t| = 1, then we have

|X(Fq)|λ(q−
d
2 ) ≤ λ(q

d
2 ) + λ(q−

d
2 ) + g.

Theorem 10 (Drinfeld-Vlǎdut). lim supg→∞
|X(Fq)|

g ≤ √q− 1, that is, |X(Fq)| ≤ (
√
q− 1)g+ o(g)

when q is fixed and g goes to infinity.

Proof. We want to apply Oesterlé’s method with the cds as large as possible, in order to maximize

λ(q−
d
2 ). From

1− cd =
1

π

∫ 2π

0
f(eiθ)(1− cos(nθ))dθ ≥ 0,

we see that each cd is ≤ 1. If we take

f(t) =
1

N + 1
(1 + t+ · · ·+ tN )(1 + t−1 + · · ·+ t−N ),

then we see that f(t) ≥ 0 whenever |t| = 1, and f(t) = 1 +
∑N

d=1
N+1−d
N+1 (td + t−d) gives cd =

N+1−d
N+1 ≥ 0 for 1 ≤ d ≤ N . Taking N to ∞, each cd tends to 1 from below, and

lim
N→∞

λ(q−
1
2 ) = q−

1
2 + q−1 + q−

3
2 + · · · = 1

√
q − 1

.

6 Dwork’s proof of rationality of the zeta function

In this section we follow Dwork’s paper [5].

6.1 Motivation

Recall the Chevalley-Warning trick:

#{(x, y) ∈ F2
p | f(x, y) = 0} ≡

∑
x,y∈Z/p

(1− f(x, y)p−1) (mod p),

∑
x∈Z/p

xi ≡

{
0 (p− 1) - i or i = 0,

−1 (p− 1) | i, i > 0
(mod p).

Together with a crude bound on the number of points, this congruence was often enough to give us
an exact point count. We would like to generalize this approach in order to compute zeta functions,
so we have to generalize in two different directions at once:

• we need to find a way to count points in Fps , s > 1, and

• we need to find a way to get pount counts modulo pk, k > 1.
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Towards the second bullet point, we are lead to wonder what the value of

p−1∑
x=0

xi (mod p2)

is. While this is a hard question, if we instead look at the sum

p−1∑
x=0

(xp)i (mod p2)

it becomes much easier! Generalizing this observation, we see that we want to work with Teichmüller
lifts, which are given by

[x] = lim
n→∞

xp
n
,

where the limit is taken p-adically (if x is an integral element of Qp or Cp, then the limit should be
taken over the net of positive integers ordered by divisibility). Teichmüller lifts are always either
0 or roots of unity, we have [xy] = [x][y], and x ≡ [x] (mod p) whenever |x|p = 1. Because of that
last point, we can think of Techmüller lifts as a function from Fp to Zp.

Now for the first bullet point: how will we get point counts in Fps? The strategy is to use ei-
ther additive or multiplicative characters (Dwork tried both approaches: multiplicative characters
almost worked, while additive characters worked perfectly). We will need to have certain compat-
ibilities between our characters for different powers of p. Recall that for complex characters, we
made the definitions

ψq(a) = e
2πiTrFq/Fp (a)

p , χq(a) = χ(Nm
Fq
Fp(a)),

giving
ψq(a) = ψ(a+ ap + · · ·+ ap

s−1
) “ = ψ(a)ψ(ap) · · ·ψ(ap

s−1
)”.

Dwork’s idea is to find a p-adic power series θ(x) such that for x ∈ Fps we have

ζTr(x)
p = θ([x])θ([x]p) · · · θ([x]p

s−1
),

where ζp is a primitive pth root of unity in Qp. Then we can evaluate sums of additive characters
at points in Fps by turning them into sums of power series evaluated at (ps− 1)th roots of unity in
Cp.

6.2 Combining p-adic congruences with inequalities

Knowing point counts of varieties modulo powers of p is great, but how will we eventually use this
to prove that Z(V, T ) is rational? Recall that a power series is a rational function if and only if its
coefficients eventually satisfy some linear recurrence relation. Thus, our strategy is as follows:

• We know that Z(V, T ) is a power series with integer coefficients.

• Trivial bounds on the point counts show that Z(V, T ) has a nontrivial radius of convergence,
so its coefficients are not too big.

• Since the coefficients are small, if they satisfy a recurrence modulo large enough powers of p,
then they actually satisfy that recurrence over the integers.
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To make this last bullet point precise, we have the following Lemma, from Chapter 13 of [1].

Lemma 4. Suppose that f(x) =
∑

i≥0 fix
i is a power series with coefficients in some field. Then

f is a rational function if and only if there exists some l ≥ 0 such that for all sufficiently large n,
we have

det


fn fn+1 · · · fn+l

fn+1 fn+2 · · · fn+l+1
...

...
. . .

...
fn+l fn+l+1 · · · fn+2l

 = 0.

Proof. Let F (n, l) be the determinant corresponding to n and l, so that F (n, 0) = fn and F (n, 1) =
fnfn+2 − f2

n+1, etc.

Suppose first that f(x) is rational, with f(x) = p(x)
q(x) , q(x) = qlx

l + · · · + q1x + 1. Then since

f(x)q(x) = p(x), we see that
fk+l = −q1fk+l−1 − · · · − qlfk

for all k > deg p. Plugging in k = n, n+ 1, ..., n+ l, we see that the rigtmost column of the matrix
corresponding to n and l is a linear combination of the remaining columns, so the determinant is
0 for all n > deg p.

Now suppose that l ≥ 0 is chosen to be minimal such that F (n, l) = 0 for all sufficiently large
n. If l = 0 then f is a polynomial and we are done. Using the determinant identity (for a proof
of this identity, see [1]: apparently it is a special case of “Jacobi’s Theorem on the minors of the
adjugate”)

F (n, l − 1)F (n+ 2, l − 1)− F (n+ 1, l − 1)2 = F (n, l)F (n+ 2, l − 2),

we see that for n sufficiently large we have F (n, l − 1)F (n + 2, l − 1) = F (n + 1, l − 1)2, so the
sequence F (n, l − 1) is eventually a geometric progression, and so by the minimality of l we must
have F (n, l − 1) 6= 0 for all sufficiently large n.

Thus, for n sufficiently large the matrix corresponding to n and l has rank exactly l (and the
first l columns are independent), so there is a unique tuple q1,n, ..., ql,n such that

fk+l + q1,nfk+l−1 + · · ·+ ql,nfk = 0

for k = n, ..., n + l. Comparing this system of equations for n and n + 1, and using the fact that
the last l rows of the matrix corresponding to n and l are the same as the first l rows of the matrix
corresponding to n+ 1 and l and that these rows are independent, we see that in fact the qi,n are
independent of n, so we can write qi,n = qi. Setting q(x) = qlx

l+ · · ·+q1x+1, we see that f(x)q(x)

is a polynomial p(x), so f(x) = p(x)
q(x) is a rational function, and we are done.

Recall that a power series f(x) is meromorphic in a disc of radius R if and only if there exists
a nonzero polynomial p(x) such that the power series f(x)p(x) converges everywhere in the disc
of radius R. We also say that a power series is meromorphic if it can be written as a ratio of two
entire functions, i.e. two power series which converge everywhere. These definitions are compatible
since every entire function has only finitely many roots inside any disc. We can make entirely
analogous definitions for p-adic meromorphic functions, and this time the compatibility between
the definitions relies on a result known as the Weierstrass preparation theorem:
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Proposition 10 (Weierstrass preparation theorem). Let f(x) =
∑

i fix
i ∈ Cp[[x]] with |fn|p → 0.

Let N be defined by |fN |p = max |fn|p and |fN |p > |fn|p for all n > N . Then there is a polynomial
g(x) = g0 + · · · + gNx

N ∈ Cp[x] and a power series h(x) = 1 + h1x + · · · ∈ Cp[[x]] with |hn|p → 0
such that f(x) = g(x)h(x), |gN |p = max |gn|p, and |hn|p < 1 for n > 0.

The proof of the Weierstrass preparation theorem is similar to the proof of Hensel’s lemma:
first you find a solution that works modulo a small power of p, and then show that you can modify
it to make it work modulo larger powers of p (for this last step, you use the division lemma for
polynomials).

Theorem 11 (Borel, Dwork). Let f(x) ∈ Z[[x]] be meromorphic in a disc of radius R∞, and
p-adically meromorphic in a disc of radius Rp. If RpR∞ > 1, then f is a rational function.

Proof. Let g∞ ∈ C[x], gp ∈ Cp[x] be polynomials with constant term 1 such that h∞(x) =
g∞(x)f(x) converges in a disc of radius R∞ and hp(x) = gp(x)f(x) converges p-adically in a disc of
radius Rp (note that even though f had integral coefficients, g∞ and gp might have transcendental
coefficients). For v = p,∞ define tv, Tv > 0 such that TvRv > 1, TpT∞ < 1, and such that t∞ is
more than the inverse of the radius of convergence of f and tp is more than the inverse of the p-adic
radius of convergence of f , so that |fn|v � tnv and |hn|v � Tnv . Suppose also that both g∞, gp have
degree bounded by m.

Since TpT∞ < 1, by choosing l sufficiently large we can ensure that

(tpt∞)m(TpT∞)l+1−m < 1.

Fix such an l with l ≥ m, and let F (n, l) be the determinant

det


fn fn+1 · · · fn+l

fn+1 fn+2 · · · fn+l+1
...

...
. . .

...
fn+l fn+l+1 · · · fn+2l


considered in the earlier lemma. Then we can replace the fs in the rows after the mth row
with the corresponding hs without changing the determinant, by using the recurrences implied by
h(x) = f(x)g(x). This gives us the bounds

|F (n, l)| � (tn∞)m(Tn∞)l+1−m

and
|F (n, l)|p � (tnp )m(Tnp )l+1−m,

where the implied constants depend on l, tv, Tv, and on the implied constants in the bounds |fn|v �
tnv and |hn|v � Tnv . Combining these, we get

|F (n, l)||F (n, l)|p � ((tpt∞)m(TpT∞)l+1−m)n,

and for n sufficiently large the right hand side goes to 0. Since F (n, l) is an integer, the only way
to have |F (n, l)||F (n, l)|p < 1 is to have F (n, l) = 0. Thus for all sufficiently large n, we have
F (n, l) = 0, and so f(x) must be a rational function (with denominator of degree at most l).

Dwork’s strategy for proving the rationality of Z(V, T ) is now to show that Z(V, T ) extends to
a p-adic meromorphic function on all of Cp, so we will be able to take Rp as large as we like in the
previous theorem.
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6.3 Summing over roots of unity

We will need to have convenient formulas for sums of the form∑
x1,...,xn∈F×qs

F ([x1], ..., [xn])F ([x1]q, ..., [xn]q) · · ·F ([x1]q
s−1
, ..., [xn]q

s−1
),

where F is a power series in n variables, say F (~x) =
∑

~u F~u~x
~u ∈ Cp[[x]], with radius of convergence

strictly greater than 1.
Since summing over (qs− 1)th roots of unity picks out the monomials with coefficients divisible

by (qs − 1), it’s almost natural to define the operator ψ by

ψ(~x~u) =

{
~x
~u
q q | ~u,

0 q - ~u,

which one might call the “left inverse of Frobenius” (it seems at first that powers of ψ will always
be “off by one” from what we really want, but this will actually work out nicely later on). What
we really care about is not ψ, but the operator ψ ◦ F , which acts on Cp[[x]] as follows: first you
multiply by F , then you apply ψ to the result of that multiplication. The (infinite) matrix M of
this action is given by

M~u,~v = coefficient of ~x~u in ψ(~x~vF (~x)) = Fq~u−~v.

Example 10. If we take p = 2 and F (x) = 1
1−2x = 1 + 2x+ 4x2 + · · · , then we get

M =


1 0 0 0 0 · · ·
4 2 1 0 0 · · ·
16 8 4 2 1 · · ·
64 32 16 8 4 · · ·
...

...
...

...
...

. . .


Note that modulo pn, F is congruent to a polynomial, so M is eventually strictly upper trian-

gular, and therefore TrM s and det(1− tM) make sense modulo pn. We will also write Tr(ψ ◦ F )s

and det(1− t(ψ ◦ F )) for these two quantities.

Lemma 5. If F (~x) =
∑

~u F~u~x
~u ∈ Cp[[x]] has coefficients going to 0, then for all s ≥ 1 we have

(qs − 1)n Tr(ψ ◦ F )s =
∑

~x∈µnqs−1

F (~x)F (~xq) · · ·F (~xq
s−1

),

where µqs−1 is the set of (qs − 1)th roots of unity in Cp.

Proof. Since (ψ ◦ F )s = ψs ◦ (F (~x)F (~xq) · · ·F (~xq
s−1

)), it’s enough to prove it for s = 1. When
s = 1 we see that the trace of ψ ◦ F is the sum over ~u of Fq~u−~u = F(q−1)~u, and each of monomial

~x(q−1)~u contributes (q − 1)n to the sum on the right.

For the next lemma, we define the weight of a vector ~u, written wt(~u), to be the sum of the
coefficients of ~u. Thus, if ~u is an exponent vector, then wt(~u) is the total degree.
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Lemma 6. If there is a constant c > 0 such that vp(F~u) ≥ cwt(~u) for all ~u ∈ Nn, then if M~u,~v =
Fq~u−~v is the matrix of ψ ◦ F , we have the power series identity

exp

( ∞∑
s=1

ts TrM s

s

)
=

1

det(1− tM)

and det(1− tM) is entire.

Proof. The identity follows from the corresponding fact for finite dimensional matrices by consid-
ering both sides modulo powers of p and the fact that modulo any power of p, M is eventually
strictly upper triangular.

Now write det(1 − tM) =
∑

m≥0 dmt
m. By the definition of the determinant in terms of sums

of products over permutations, we have

vp(dm) ≥ min
{~u1,...,~um}={~v1,...,~vm}

∑
i

vp(Fq~ui−~vi)

≥ c min
{~u1,...,~um}

(wt(~u1) + · · ·+ wt(~um))(q − 1)

� m1+
1
n ,

where the last inequality follows from the fact that the number of vectors in Nn of total weight less
than 1

2m
1
n is at most 1

2m for m sufficiently large. Thus p-adic absolute values of the coefficients
dm of det(1− tM) go to zero faster than any rm with r > 0, so det(1− tM) is entire.

6.4 The additive character as a power series

We need to construct a power series θ(x) ∈ Zp[[x]] such that

• if x ∈ Fps , then

ζTr(x)
p =

s−1∏
i=0

θ([x]p
i
),

where ζp is a primitive pth root of unity in Cp, and

• θ(x) =
∑

m≥0 βmx
m with vp(βm)� m.

Let’s fix some notation for talking about elements of Cp such as ζp while making as few “choices”
as possible. Start by taking your favorite quadratic nonresidue α ∈ F×p \(F×p )2 for p 6= 2 (for instance,
maybe your favorite is just the least quadratic nonresidue modulo p), and choose a square root

√
a

in Fp2 (this time the choice doesn’t really matter). Set π = [
√
α]p

1
p−1 , and if p = 2 set π = −2, so

that
πp−1 = −p.

Then we choose ζp to be the primitive pth root of unity satisfying

ζp ≡ 1 + π +
π2

2
+ · · ·+ πp−1

(p− 1)!
(mod πp).

(Try working out more terms of the expansion of ζp in powers of π yourself! It’s fun.)
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Define a power series E(x), called the Artin-Hasse exponential, by

E(x) = exp
(∑
j≥0

xp
j

pj

)
for |x|p < 1

p
1
p−1

(although we will soon show that the power series for E(x) converges for all x with

|x|p < 1, the equality above will no longer be valid for x with |x|p ≥ 1

p
1
p−1

- this subtlety has several

counterintuitive consequences). Since

E(x)p

E(xp)
= exp(px) ∈ 1 + pxZp[[x]],

we have E(x) ∈ Zp[[x]] by the following easy result:

Lemma 7 (Dwork’s Lemma). If f(x) = 1 + f1x + · · · ∈ Qp[[x]], then f(x) ∈ Zp[[x]] if and only if
f(x)p

f(xp) ∈ 1 + pxZp[x].

In the power series identity

E(x)p = exp
(
p
∑
j≥0

xp
j

pj

)
,

both sides converge for |x|p < 1, so this identity is valid for all such x.
Let η ∈ Zp[π] be the unique solution to E(η) = ζp. One can easily check from the power series

expansion of E(x) and the displayed identity above that η exists and is unique, and that we have

η ≡ π (mod πpp−1).

Finally, define θ(x) by
θ(x) = E(ηx).

Note that since E(x) ∈ Zp[[x]] and vp(η) = 1
p−1 , if we write θ(x) =

∑
m≥0 βmx

m then we have
vp(βm) ≥ m

p−1 .

Lemma 8. For x ∈ Fps, we have

ζTr(x)
p =

s−1∏
i=0

θ([x]p
i
).

Proof. First we check that the right hand side is a pth root of unity:

( s−1∏
i=0

θ([x]p
i
)
)p

= exp
(
p

s−1∑
i=0

∑
j≥0

[x]p
i+j
ηp

j

pj

)
,

and since [x]p
s

= [x], we can rewrite the right hand side as

exp
(
p

s−1∑
i=0

[x]p
i
∑
j≥0

ηp
j

pj

)
.
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Now, we have
∑s−1

i=0 [x]p
i ∈ Zp since it is preserved by frobenius and is an integral element of an

unramified extension of Qp, so we can write it as the limit of a sequence of elements of N+. Since
for any element n ∈ N+ we have

exp
(
pn
∑
j≥0

ηp
j

pj

)
= E(η)pn = ζpnp = 1,

we see that
∏s−1
i=0 θ([x]p

i
) is a pth root of unity. In order to figure out which pth root of unity it is,

we just have to compute it modulo π2:

s−1∏
i=0

θ([x]p
i
) ≡

s−1∏
i=0

(1 + π[x]p
i
) ≡ 1 + πTr(x) ≡ ζTr(x)

p (mod π2).

For general q, we define θq(x) by

θq(x) = θ(x)θ(xp) · · · θ(x
q
p ).

It turns out that there is actually more than one power series θ(x) with the properties given
above. Dwork’s original construction from [5] was the much more complicated:

(1 + (ζp − 1))x
∏
j≥1

(1 + (ζp − 1)p
j
)
xp
j
−xp

j−1

pj ,

where (1+y)x was defined to be the binomial series 1+xy+ x(x−1)
2 y+ · · · (proving that this infinite

product has a large radius of convergence involved a two-variable version of Dwork’s Lemma).
Another power series which works is given by exp(π(x− xp)) (is this the same as θ(x)?).

6.5 Counting points on hypersurfaces

Let V be the affine hypersurface given by

V = {(x1, ..., xn) ∈ AnFq | f(x1, ..., xn) = 0, x1 · · ·xn 6= 0},

and let Ns = |V (Fqs)|. Our goal is to compute

Z(V, T ) = exp
(∑
s≥1

T sN s

s

)
.

We have

qsNs =
∑

~x∈(F×qs )n

∑
x0∈Fqs

ζTr(x0f(~x))
p = (qs − 1)n +

∑
(x0,~x)∈(F×qs )n+1

ζTr(x0f(~x))
p .

Suppose that x0f(~x) =
∑

~u∈Nn+1 a~u(x0, ~x)~u, then since [a~u]q
i

= [a~u] for all i (since a~u ∈ Fq), we
have

qsNs = (qs − 1)n +
∑

~x∈(F×qs )n+1

∏
~u

s−1∏
i=0

θq([a~u][~x~u]q
i
).
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Set F (~x) =
∏
~u θq([a~u]~x~u). If we write F (~x) =

∑
~u F~u~x

~u, ten from the definition of θq we see that

vp(F~u) ≥ wt(~u)

q − 1
.

Thus we have

qsNs = (qs − 1)n +
∑

~x∈µn+1
qs−1

s−1∏
i=0

F (~xq
i
)

= (qs − 1)n + (qs − 1)n+1 Tr(ψ ◦ F )s,

and this gives us

Z(V, T ) = exp

(∑
s≥1

T s(qs − 1)n(1 + (qs − 1) Tr(ψ ◦ F )s)

qss

)
.

Defining an operator δ by h(t)δ = h(t)
h(qt) , we can simplify the above to

Z(V, qT ) = exp

(∑
s≥1

T s

s

)(−δ)n

exp

(∑
s≥1

T s Tr(ψ ◦ F )s

s

)(−δ)n+1

= (1− t)−(−δ)n det(1− t(ψ ◦ F ))−(−δ)n+1
,

and this is p-adically meromorphic since det(1 − t(ψ ◦ F )) is entire (which followed from the fact
that F had radius of convergence strictly greater than 1).

6.6 General varieties

In the previous section, we completed the proof of the fact that every affine hypersurface has a
rational zeta function. Now note that if V1, V2 are hypersurfaces, then V1∪V2 is also a hypersurface,
so

Z(V1 ∩ V2, T ) =
Z(V1, T )Z(V2, T )

Z(V1 ∪ V2, T )

is also a rational function. Generalizing this in the obvious way, we see that if V1, ..., Vk are affine
hypersurfaces, then Z(V1 ∩ · · · ∩Vk, T ) is a rational function. Since every closed affine variety is an
intersection of finitely many hypersurfaces, this proves rationality for closed affine varieties. Since
every affine variety can be written as the difference of two closed affine varieties, this shows that
every affine variety has a rational zeta function.

Finally, since every variety V has an open cover U1 ∪ · · · ∪ Uk such that all the intersections
Ui1 ∩ · · · ∩ Uij with 1 ≤ i1 < · · · < ij ≤ k are affine, an inclusion-exclusion argument lets us write
the zeta function for V in terms of the zeta functions of such intersections, so the zeta function of
V is also rational.
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7 Tony Feng’s Notes on Deligne’s “La Conjecture de Weil. I”

7.1 Introduction

7.1.1 Weil’s conjectures

Let X0 be a smooth projective variety of dimension n over Fq.

Definition 9. The zeta function of X0 is

ζ(X0, s) :=
∏
x∈X0

(
1− 1

qsx

)−1

.

This is in obvious analogy to the Riemann zeta function, but it will be more convenient for us
to work with the function

Z(X0, t) =
∏
x∈X0

(
1− t− deg x

)−1
.

We clearly have
ζ(X0, s) = Z(X0, q

s).

Now we can state Weil’s conjectures.

Conjecture 12 (Weil).

1. Z(X0, t) is a rational function of t, i.e Z(X0, t) ∈ Q(t), with factorization of the form

Z(X0, t) =
P1(t) . . . P2n−1(t)

P0(t) . . . P2n(t)
.

2. Z(X0, t) satisfies a functional equation.

3. The roots of Pi(X0, t) have absolute value q−i/2.

7.1.2 Cohomological formulation

Weil envisioned these conjectures as a consequence of an appropriate cohomology theory for X :=
(X0)Fq which would behave analogously to singular cohomology. In particular, (1) should follow

from a “Lefschetz trace formula” in X, with X(Fq) interpreted as the “fixed points” of Frobenius.
The functional equation predicted in (2) should follow from Poincaré duality. The condition (3) is
an analogue of Riemann’s hypothesis.

This hypothetical cohomology theory was eventually constructed by Grothendieck, and is now
called étale cohomology. The purpose of these notes is to explain the main ideas going into the
proof of the proof of (3) in its étale cohomological formulation:

The eigenvalues of Frobenius on Hi
ét(X; Q`) are algebraic over Q, with magnitude

qi/2 under every complex embedding.

Everything here comes from Deligne’s article [4], but I have reorganized the presentation, and
focused on the simplest cases in order to highlight the key ideas.
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7.1.3 Overview of the proof

By simple reductions, one quickly reduces to checking the eigenvalues of Frobenius on the middle-
dimensional cohomology. To analyze this, one chooses a Lefschetz pencil f : X → P1, which always
exists after possibly blowing up X (and it is easy to see that blowing up doesn’t affect the problem).

The idea is then to study the cohomology of Rnf∗Q` on P1. This sheaf will be a local system
on a dense open subset of P1, for general reasons of constructibility of proper pushforwards. There
are three main ingredients in the argument.

1. A “big image” result on monodromy for a Lefschetz pencil.

2. A rationality result, showing that a certain characteristic polynomial has coefficients Q (being
a priori in Q`). This is achieved by an extremely clever “gcd argument”, which is quintessen-
tially Deligne.

3. A very clever analytic estimate, finally establishing the desired bound (in view of the previous
two ingredients). This is inspired by the Rankin-Selberg method.

We will actually present (3) first, even though it relies on the first two points, because it is the crux
of the argument. Then we will go back and indicate how to verify (1) and (2).

7.2 Étale cohomology

The Pi in Weil’s conjecture are essentially characteristic polynomials of Frobenius acting on étale
cohomology. The intuition to keep in mind is that étale cohomology with coefficients in a constant
(torsion) sheaf (or more generally, a torsion local system) behaves “like singular cohomology”. As
we will shortly see, the familiar fundamental results of classical singular cohomology, once phrased
invariantly enough, become theorems in étale cohomology.

Remark 13. For quasi-coherent sheaves, étale cohomology coincides with coherent cohomology.
These won’t come up in our discussion.

7.2.1 The orientation sheaf

Here’s an example of what I mean. It’s commonly said that complex manifolds are canonically
oriented, but from an algebraic perspective that’s not quite true - you have to choose an orientation
for C. This amounts to a choice of ±i, which can be thought of as a choice of embedding of Q/Z
into the roots of unity.

We’re going to be talking about Q`, the `-adic numbers. The orientation sheaf for Q` involves
a choice of the `-power roots of unity. Such a choice is equivalent to a choice of trivialization

lim←−µ`n ' lim←−Z/`n ' Z`.

In any case Z` acts on lim←−µ`n , and we define

Q`(1) = Q` ⊗Z` lim←−µ`n .

For any n, we define Q`(n) = Q`(1)⊗n. For negative n, this is defined by

Q`(n) := Q`(−n)∨.
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Remark 14. For varieties over finite fields, you can think of this in the following way. Q`(n) is a
Q`-vector space with a natural action of Gal(Fq/Fq), where Frobenius acts as multiplication by

q. However, my Frobenius F will always be the geometric Frobenius x 7→ xq
−1

, which acts as
multiplication by q−1.

7.2.2 Properties of étale cohomology

Let X be a smooth variety of pure dimension n over an algebraically closed field. (In terms of
earlier notation, think X = (X0)Fq .)

1. (Fundamental class) There is a fundamental class

Tr: H2n
c (X,Q`(n))

∼−→ Q`.

Equivalently, you can think of this as Tr: H2n
c (X,Q)

∼−→ Q`(−n).

2. (Cohomological dimension) X has cohomological dimension 2n:

Hi(X,Q`) = 0 if i > 2n.

3. (Poincaré duality) There is a cup product

Hi(X,Q`)⊗H2n−i
c (X,Q`)→ H2n

c (X,Q`)
∼−→ Q`(−n).

which induces a perfect pairing.

4. (Lefschetz trace formula) There’s a Lefschetz trace formula

Fix(F ) = #X(Fq) =
∑
i

(−1)i Tr(F,Hi
c(X,Q`)).

Everything generalizes to a version with coefficients in a more general local system. It may not
be clear how to do that for the last one now, but it should become clear later.

7.2.3 Rationality of the zeta function

Because it will actually be important for us later, we derive the rationality of the zeta function
from the above properties. Consider

t
d

dt
logZ(X, t) = t

d

dt

∑
x

− log(1− t− deg x)

= t
d

dt

∑
n≥1

xt−n deg x

n

=
∑
n≥1

t−n
∑

deg x|n

deg x
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Observe that
∑

deg x | n = #X(Fqn), since points of X can be thought of as orbits in #X(Fqn),
of size equal to the their degree. Substituting in the Lefschetz trace formula, we find that this is∑

n≥1

t−n
∑
i

(−1)i Tr(F,Hi
c(X,Q`) =

∑
i

(−1)i
∑
n≥1

Tr(Fn,Hi
c(X,Q`).

Now, recall that for an operator F on a vector space V ,

t
d

dt
log det(1− tF, V )−1 =

∑
n≥1

Tr(Fn)tn.

Proof: write det(1− tF ) =
∏

(1− tαi), so that this becomes

t
d

dt

∑
n

∑
i

αni t
n

n
=
∑
n

tn
∑
i

αni .

So that tells us that∑
i

(−1)i
∑
n≥1

Tr(Fn,Hi
c(X,Q`)) = t

d

dt
log det(1− Ft,Hi

c(X,Q`))
−1.

Substituting this above, we obtain∏
x

(1− t− deg x) =
∏
i

det(1− Ft,Hi
c(X,Q`))

(−1)i+1
.

The right hand side predicts the polynomials appearing in Weil’s conjectures.

7.3 Some reductions

Let X0 be a smooth proper variety of dimension n over Fq, and set X = (X0)Fq . Let RH(Hi(X))
denote the statement that

the eigevalues of F ∗ on Hi(X,Q`) are algebraic with absolute value qi/2 under all com-
plex embeddings.

We would like to prove RH(Hi(X)) for 0 ≤ i ≤ 2n.

7.3.1 Formalities

If we have an embedding
Hi(X) ↪→ Hi(X ′)

then RH(Hi(X ′)) =⇒ RH(Hi(X)).

Example 15. If X ′ → X the blowup along a closed subvariety Z ⊂ X, then we get such an
embedding. We will use the special case where Z is the section by a codimension-2 plane.

If we have a surjection
Hi(X ′′)→ Hi(X)

then RH(Hi(X ′)) =⇒ RH(Hi(X)).

39



7.3.2 Poincaré duality

Thanks to the perfect pairing

Hi(X,Q`)×Hn−i(X,Q`)→ Q`(−n)

furnished by Poincaré duality, we automatically know that the Pi(T ) = T ???P2n−i(q
n/T ). In

particular, if α is an eigenvalue for F ∗ on Hi(X,Q`) then qn/α is an eigenvalue for F ∗ on Hi(X,Q`).
Therefore,

RH(Hi) =⇒ RH(Hn−i).

The upshot is that it suffices to prove RH(Hi) for i = 0, . . . , n.

7.3.3 Weak Lefschetz

Let Y ⊂ X be a general (smooth) hyperplane section. (Since we’re over a finite field, this might
not exist a priori. But a smooth hypersurface section always exists, so we’re okay after passing to
some large Veronese embedding first.)

Theorem 16 (Lefschetz Hyperplane). The restriction map Hi(X)→ Hi(Y ) is an isomorphism for
i < n− 1 and an injection for i = n− 1.

This will be useful for an inductive proof of the theorem. By the preceding reductions, we get
for free that the we only need to worry about the middle dimension.

7.4 Cohomology of Lefschetz pencils

7.4.1 Introduction to Lefschetz pencils

Most of what we can do for general varieties is bootstrapped from curves, so it is natural to adopt
an inductive approach. We’ve already seen that a hyperplane section of X captures “most” of its
cohomology (everything except the middle). To get the rest we’ll put X in the“cookie cutter” to
get many hyperplane sections. By induction we “know” the cohomology of the hyperplane sections,
and then the task is to assemble them together.

A pencil of hyperplanes is the set of hyperplanes passing through some codimension-2 plane A,
which we call the axis of the pencil. This set has a natural structure of a P1. We have a natural
rational map X 99K P1 sending x to the hyperplane spanned by x and A. This is defined away
from A ∩X. The fibers of this map are points which lie in a common hyperplane through A, i.e.
hyperplane sections of X.

We can resolve the indeterminacy of the map by blowing up at the locus A ∩ X, giving an
honest fibration

X̃ → P1.

Furthermore,
Hi(X) ↪→ Hi(X̃) = Hi(X)⊕Hi−2(X ∩A)(−1)

(the last equality by the Thom isomorphism theorem), so by one of reductions it suffices to prove
RH(Hi(X̃)).

There’s an additional technical point in the definition of Lefschetz pencil. The map X̃ → P1

is not smooth, since hyperplane sections can be singular (exactly when the hyperplane becomes
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tangent to X). I’ll want to choose A generally, so that these singularities are as mild as possible, i.e.
simple points. You can think of this as asking that the function f : X̃ → P1 be a “morse function”.
A Lefschetz pencil is by definition a fibration X̃ → P1, with singularities as mild as possible. As
more precise definition will be given when it is needed, in §7.6.

7.4.2 Monodromy and the spectral sequence

We’re going to try to “fit together” the cohomologies of the different hyperplane sections and see
what they tell us about the cohomology of the whole thing. This is an obvious setting for a spectral
sequence.

Eiq2 = Hi(P1, Rqf∗Q`) =⇒ Hi+q(X,Q`).

Now, since P1 is a curve we have that Hi(P1, Rqf∗Q`) vanishes for i > 2. Therefore, there are only
three groups that we need to worry about, corresponding to (i, q) = (0, n), (1, n−1), and (2, n−2).
However, it is clear that in order to analyze them we need to understand the sheaves Rqf∗Q`.

The basic intuition to keep in mind that is that the “constructible sheaf” Rqf∗Q` is assembled
together from its stalks (Rqf∗Q`)u = Hq(Xu,Q`) using monodromy. Let me explain.

Let j : U ↪→ P1 be the inclusion of the open set where f is smooth. Over U , Rqf∗Q` restricts to
a local system. This means that it is a locally constant Q` sheaf for the étale topology (with some
finiteness assumptions). There is a monodromy action of π1(U, u) on the fibers which determines
the local system - in fact, a Q`-local system is equivalent to the data of a finite-dimensional Q`-
representation of π1(U, u).

The key is to understand this monodromy action. Its precise nature will be elaborated upon
later, but for now it’s enough to emphasize that the monodromy is only non-trivial on the middle-
dimensional groups Hn−1(Xét,Q`). In other words, the local systems Rif∗Q`|U are trivial except
when i = n− 1. This fact will be part of the “Picard-Lefschetz” formula for the monodromy to be
discussed in the future.

Armed with this knowledge, we can immediately dispose of a couple terms of the spectral
sequence. One of them was

H0(P1, Rnf∗(Xu,Q`) = (Hn(Xu,Q`))
π1 = Hn(Xu,Q`).

Now, the result follows from induction on the dimension of X.

Remark 17. Actually, it turns out that we need to induct on even dimension (for reasons having
to do with the Picard-Lefschetz description of monodromy). We can address this issue by taking
another hyperplane section of Xu.

The other term H2(P1, Rn−2f∗Q`) is basically dual to the one just discussed.

Remark 18. There is a difference between Hi(U,Rnf∗Q`) and Hi(P1, Rnf∗Q`), and it will typically
happen that Rnf∗Q` is not a local system, while its restriction to U is a local system. But that’s
not really an issue, because for any F on X we have a short exact sequence

0→ j!(F|U )→ F → (sum of skyscrapers)→ 0.

which induces a surjection
H1
c(U,F)→ H1(P1, j∗F)→ 0.

Therefore, for our purposes is really is enough to consider the restriction to U .
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The last case H1(P1, Rn−1f∗Q`) is the most subtle. For now we’ll just say that there is a short
exact sequence

0→ j∗E → Rn−1f∗Q` → (constant sheaf)→ 0 (1)

with E a sheaf on U , so it suffices to analyze H1(U, E) (since H1 of P1 with values in a constant sheaf
vanishes). The local system E contains the “vanishing cycles”, which are the cohomology classes
that vanish in restriction to some special (singular) fiber. The monodromy action is unipotent,
and acts by deforming the cohomology by vanishing cycles, so acts trivially on the quotient sheaf
(explaining why it is constant).

We will elaborate on this monodromy theory later, but for present purposes it is only to know
the following formal facts:

• The monodromy action preserves the subsheaf E .

• The sheaves E⊥ (orthogonal for the Poincaré pairing) and Rn−1f∗Q`/E are constant.

7.5 The Fundamental Estimate

7.5.1 Theorem on weights

We are now going to jump into Deligne’s estimate on the eigenvalues of Frobenius, assuming various
auxiliary facts which we have to go back and justifiy later.

We were considering a Lefschetz fibration

f : X → P1

which was smooth over U ⊂ P1. This situation is over the algebraic closure Fq, but we can assume
that everything is defined over Fq, i.e. that the above situation is the base change of

f0 : X0 → P1
0

which is smooth over U0 ⊂ P1, with everything defined over Fq.

Definition 10. A local system F0 on X0 is said to have weight β if for all x ∈ |X0|, the (geometric)

Frobenius F ∗x acting on Fx has eigenvalues which are algebraic with absolute value q
β/2
x under every

complex embedding.

Example 19. In particular, Q`(r) has weight −2r.

Theorem 20. Suppose E0 is a sheaf on U0 satisfying the following conditions:

1. E0 is equipped with an alternating, non-degenerate bilinear form

ψ : E0 ⊗ E0 → Q`(−β).

2. The image of π1(U, u) in GL(Eu) is an open subgroup of Sp(Eu, ψu).

3. For all x ∈ U0, the polynomial det(1− Fxt, E0) has rational coefficients.

Then E0 has weight β.
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Remark 21. One can imagine that E0 is essentially sheaf of vanishing cycles as in (1). (Then
β = n − 1.) This is not quite how the argument goes, because we don’t know a priori that the
restriction of the symplectic form to E is non-degenerate. (This is true, but only by deduction a
posteriori.) This can be easily rectified by considering the filtration by the constant sheaf E ∩ E⊥.

The inspiration from the following argument is said to come from ideas of Rankin attacking the
Ramanujan conjecture (one of the consequences of Deligne’s work).

Recall that

t
d

dt
log det(1− Fxt, E0) =

∑
n≥1

Tr(Fnx )tn.

In particular, since Tr(Fx,
⊗2k E0) = Tr(Fx, E0)2k we have that t ddt log det(1− Fxt, E0) has positive

rational coefficients (the positivity would make no sense without knowing that they were rational!).
Therefore, the same holds for

det(1− Fxt,⊗2kE0).

Now,

Z(U,⊗2kE0, t) =
∏
u

det(1− Fut,⊗2uE0).

The key point is that a product of power series with positive coefficients has radius of convergence
at most that of any of its factors, since the radius of convergence can be measured by the size of
the coefficients of the power series, which can only increase by multiplying by a power series with
positive coefficients. (If we did not know that the coefficients were positive, then there could be
“cancellation of poles” among the factors.)

Now let’s consider the Grothendieck-Lefschetz formula for the zeta function:

Z(U,⊗2kE0, t) =
P1(t)

P0(t)P2(t)
.

Here P0(t) = det(1 − F ∗t,H0
c(U, E)). But a local system on an affine variety has no compactly

supported global sections, so P0(t) = 1. What about H2
c? By duality,

H2
c(E0) ' H0(E∨0 )∨(−1) = ((E∨u )π1)∨ = (Eu)π1(−1)

Now, since π1(U, u) is open in Sp(Eu) it has the same Lie algebra. This is where we use the “big
image” assumption! The coinvariants of representation of Sp(Eu) coincide with coinvariants for its
Lie algebra, so it is equivalent to understand the coinvariants ofr Sp(Eu) on π1(U, u). Then Eu is
just the “standard representation” of the symplectic group. This become a classical question about
the coinvariants of tensor powers of the standard representation. It is a theorem that the ring of
invariants is generated by the tensor symbols [x, y] corresponding to the symplectic form, and so
we find that (

⊗2kEu
)
π1
'
⊕
P ′

Q`(−kβ)

where P ′ is a set of partitions of [1, 2k] into pairs, corresponding to [xi, xj ].
The upshot is that H2

c(U,⊗2kE) ' Q`(−kβ − 1)N for some N . So

Z(U0,⊗2kE , t) =
P1

(1− qkβ+1t)N
.
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In particular, the only pole is at t = q−kβ−1. Since there are no poles of Z(U0,⊗2kE , t) with
|t| ≤ q−kβ−1, there are no poles of det(1 − Fxt,⊗2kE0)−1 with |t| ≤ q−kβ−1. In other words, there
are no zeros of det(1−Fxt,⊗2kE0) with absolute value less than q−kβ−1. The zeros are the inverses
of the eigenvalues of Frobenius raised to 2k, so for any such zero α we must have

|α|−2k ≥ q−kβ−1.

Rearranging we get

|α| ≤ q
β
2

+ 1
2k .

Now we just take 2k → ∞ to get the desired upper bound. By Poincaré duality qβ/α is also an
eigenvalue, so

|qβ/α| ≤ qβ/2

implies the opposite inequality.

7.5.2 Calculation of Frobenius eigenvalues

We now indicate how to complete the calculation of Frobenius eigenvalues. The induction is actually
a little subtler than we suggested before, because of the way one needs to use the tensor power
trick. The reason is that at some point we need to replace X by a large cartesian power, so we
cannot induct on the dimension all at once. Instead, we prove a certain estimate by induction, and
then go back and refine it using the tensor power trick.

The statement to be proved by induction is:

Let X0/Fq be a smooth projective variety of even dimension d. Every eigenvalues α
of F ∗ on Hd

c(X,Q`) is algebraic and has absolute value

q
d
2
− 1

2 ≤ |α| ≤ q
d
2

+ 1
2 . (2)

The induction we started will establish this. Then, by considering Xk for large k (the tensor
powe trick) and using the Künneth formula, one refines this inequality to the desired equality.

So it remains to establish the bound (2) for the eigenvalues of Frobenius on H1
c(P

1, E0), where
now we take E0 to be the sheaf of vanishing cycles as in (1). The zeta function is∏

u

det(1− F ∗u t, Eu)−1 = Z(U, E0, t) = P1(t). (3)

The zeros of P1(t) are the inverses of the Frobenius eigenvalues. Now, this is manifestly an `-adic
polynomial, but also a power series with rational coefficients by our assumptions, hence a rational
polynomial. This shows that the eigenvalues are rational.

We want to control the zeros of P1(t), which are the zeros of Z(U, E0, t). We would like to say
that by the Euler product (3), the zeros of P1(t) occur at the zeros of

∏
u det(1− F ∗u t, Eu)−1. The

zeros of this product occur at zeros of the individual factors, but there are none!
The issue is that the product expansion (3) only holds for small t. It is valid where it converges,

so what we would like is for it to converge for |t| < q−β/2. In fact it just barely fails; it only
converges for |t| < q−β/2−1. By the tensor power trick and Poincaré duality, we can upgrade this
bound to the desired equality.
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We have det(1− F ∗u t, Eu) =
∏

(1− αi,ut). Therefore, it suffices to analyze when∑
i,u

αi,ut

converges. We know that |αi,u| = qβ deg u/2, so we can regroup the sum as∑
u

∑
n

qnβ/2#U(Fqn)tn.

What is #U(Fqn)? Well U is off from A1 by just a finite set of points, so #U(Fqn) ≤ A1(Fqn) = qn.
So the conclusion is that the sum is ∑

n

qn(1+β/2)tn

and thus converges for |t| < q−(1+β/2).
We’re almost done. We proved that H1(U, E0) has eigenvalues of magnitude

qβ/2−1 ≤ |α|.

By Poincaré duality, we can conclude for free that

qβ/2−1 ≤ |α| ≤ qβ/2+1.

This is what precisely the estimate (2) that we wanted.

7.6 Monodromy theory of Lefschetz pencils

We now want to go back and substantiate some of the claims about Lefschetz pencils that we used.
The setup of interest is that we have a fibration

f : X → P1

such that

1. X is non-singular of dimension n+ 1

2. f is proper,

3. f has non-degenerate critical points, i.e. the only singular points of the singular fibers are
simple double points.

The third condition is essentially that of being a “morse function”.
In such a situation, f will be smooth outside a finite set of points S ⊂ P1. If U is the open

complement, then Rif∗Q` will be a loca system on U , and we want to understand the monodromy
action of π1(U, u) on (Rif∗Q`)u = Hi(f−1(u),Q`).
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7.6.1 Existence of Lefschetz pencils

This situation arose from taking a pencil of hyperplane sections of a smooth projective X ⊂ PN

along an axis A, and blowing up along A ∩X. Why does a pencil of the desired form exist? The
picture is clarified by looking at the dual variety X∨ ⊂ (PN )∨. The points of (PN )∨ are the
hyperplanes of PN , and X∨ is the subset of hyperplane tangent to some point of X. In other
words, it is the image of the incidence correspondence

Σ = {(x,H) ⊂ X × (PN )∨ | H ⊃ TxX}. (4)

By dimension counting, Σ has dimension dimX + (N − dimX − 1) = N − 1, so X∨ has dimension
at most N − 1. A pencil of hyperplanes is the same as a literal pencil P1 ⊂ (PN )∨ (linearly
embedded). It turns out that if it avoids the singular locus and intersects X∨ transversely, then it
will be a Lefschetz pencil. This is a local calculation which we leave as an exercise to the reader.

7.6.2 The local theory

Let’s consider the classical case first: suppose we have a map f : Xn+1 → D where is an open unit
disc in C, which is smooth outside 0 and such that X0 := f−1(0) has a double point.

It turns out (but is not obvious) that X deformation retracts to X0, so we have an isomorphism

Hi(X0,C) ' Hi(X,C).

On the other hand, if t denotes some generic non-zero point of D then we have a restriction map

Hi(X0,C) ' Hi(X,C)→ Hi(Xt,C).

The image consists of the “monodromy invariants” under the monodromy action of π1(D∗, t) ' Z
on Hi(Xt,C). Let γ be a generator of π1(D∗, t).

Definition 11. We define the vanishing subspace to be Hn(X0,C)⊥ ⊂ Hn(Xt,C) under the pairing
induced by Poincaré duality.The elements of Hn(X0,C)⊥ will be referred to as vanishing cycles.

Here are the essential facts:

• The vanishing subspace is a line, with generator denoted δ.

• γ acts trivially on Hi(Xt,C) for i 6= n.

• For x ∈ Hn(Xt,C), γ acts by x 7→ x± (x, δ)δ.

Remark 22. The ± depends on n mod 4.

It is straightforward to write down the algebro-geometric analogue. We replace D by the
spectrum of a (strictly henselian) DVR, with special point s and generic point η, so we have maps

Hi(Xs,Q`) ' Hi(X,Q`)→ Hi(Xη,Q`).

Now the possibilities are a little complicated. First, they depend on whether n is odd or even.
Fortunately we’re only going to discuss the even case, so we can ignore that. It is also possible that
there is no vanishing cycle, i.e. δ = 0, which makes things easier (no monodromy means everything
is a local system). The interesting case is the one where

γ(x) = x+ (x, δ)δ (5)

so this is the one we’re going to discuss.
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7.6.3 The global theory

We have a Lefschetz pencil
f : X → P1.

This is smooth outside a finite set S. We choose a baseopint u /∈ S. For each s ∈ S, we get a
vanishing cycle δs, and a loop γs such that for x ∈ Hn(Xu := f−1(u),Q`)

γs(x) = x± (x, δs)δs.

Definition 12. We define the subspace of (global) vanishing cycles E ⊂ Hn(Xu) to be the span
〈δs : s ∈ S〉.

Proposition 11. The space E is stable under the monodromy action, and its orthogonal comple-
ment (for the Poincaré pairing) E⊥ is the monodromy invariants.

This obvious from the nature of the Picard-Lefschetz formula. Therefore, we rename E = E/E⊥

and forget that E⊥ exists.

Theorem 23. The vanishing cycles δs are conjugate under the monodromy action.

Proof. We give an argument in the classical case, i.e. for varieties over C, and implicitly invoking
an equivalence between the étale and analytic settings. (This is also what Deligne does.)

Consider the incidence correspondence Σ ⊂ X ×P∨ from (4). Let D ⊂ P∨ be the hyperplanes
cutting out the Lefschetz pencil. Then S = D ∩ X∨ is precisely the set of points where the
Lefschetz pencil is not smooth, and we want to show that the vanishing cycles are all conjugate by
π1(D − S, u). By the Lefchetz Hyperplane Theorem, for a general choice of D we have

π1(D − S, u)� π1(P∨ −X,u).

Therefore, it suffices to show that the vanishing cycles are conjugate under π1(P∨ −X,u). To do
this, we will argue that there is an element in π1(P∨ −X,u) taking γs to γs′ . Indeed, we can just
draw a loop in P∨ −X that follows γs until it is very close to s, then moves to s′ and winds once
around it, and then returns along its original path.

7.6.4 Proof of “big image”

Corollary 5. The representation of π1(U, u) on E is irreducible.

Proof. Note that γsx = x± (x, δs)δs. Take some non-zero x ∈ F . Then (x, δs) 6= 0 for some s, so

γsx− x = ±(x, δs)δs.

Therefore, δs ∈ F . But since the δs are all conjugate, they must then all lie in F .

Theorem 24. The image of ρ : π1(U, u)→ Sp(E) is open.

Proof. The image is some compact `-adic Lie group. It suffices to show that its Lie algebra L is
open.

Note that the L is generated by automorphisms of the form

d(x 7→ x∓ (x, δs)δs) = (x 7→ ±(x, δs)δs).
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In slightly more generality, we claim that if V is any irreducible representation of L, equipped with
an invariant non-degenerate symplectic form (·, ·), and such that L is generated by endomorphisms
of the form x 7→ ψ(x, δ)δ, then L = Sp(V, ψ).

For any δ ∈ V , define N(δ) ∈ End(V ) by

N(δ)(x) = ψ(x, δ)δ.

We know that L is generated by elements of this form. We’re going to try to argue that N(δ) for
every δ is in L. This at least produces many elements of L, and we leave it as an exercise to verify
that they are enough to generate sp(V, ψ).

Let W be the set of δ ∈ V such that N(δ) ∈ L. We know at least that this is non-empty,
and we want to show that it is very big. We’re going to do that by arguing that it is an invariant
subrepresentation of V . Note that at present, is it not even clearly a subspace! However, it is at
least obviously closed under scaling.

Since N(δ) is nilpotent, the endomorphism exp(N(δ)) makes sense. We want to show that
exp(N(δ)) preserves W for any δ ∈W . It will be enough to show that exp(λN(δ)) preserves ψ and
L, since W is defined in terms of these. These statements are familiar (at least by analogy) from
classical Lie theory:

• N(δ) preserves ψ, in the sense that

ψ(N(δ)x, y) + ψ(x,N(δ)y) = 0.

This is just what it means for L ⊂ sp(V, ψ).

• Notice that since N(δ) has square 0, the automorphism exp(N(δ)) makes sense. We claim
that Ad exp(N(δ)) preserves L. You should think of this as analogous to “AdG preserves g”,
and crank out the calculation if you aren’t convinced. (I have done it!)

Now comes an important calculation. For a scalar λ ∈ Q`, we have

exp(λN(δ′))δ′′ = δ′′ + λψ(δ′′, δ′)δ′.

This implies that if δ′ and δ′′ are in W , and ψ(δ′′, δ′) 6= 0, then the whole subspace spanned by δ′

and δ′′ is in W . This almost shows that W is a subspace, but not quite. We know that W is closed
under sums of non-orthogonal vectors.

What we can conclude is that W is the union of its maximal linear subspaces, which must
furthermore be pairwise mutually orthogonal. Suppose there is more than one such, say W ′ and
W ′′. Since neither can be stable under L, by the irreducibility of V , some N(δ) ∈ L doesn’t preserve
W ′, say N(δ) takes w′ ∈ W ′ out of W ′. Then N(δ)w′ is orthogonal to w′. But the image of N(δ)
is the line spanned by δ, so N(δ)w′ = 0, a contradiction.

7.7 The rationality theorem

Finally we are going to justify the rationality assumption of Theorem 20.
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7.7.1 Setup

Let’s recall the setup. We have a Lefschetz pencil

f : X → P1

smooth over an open subscheme U ⊂ P1 which is the complement of S. We have a local system
E ⊂ Rnf∗Q`|U on U consisting of the “vanishing cycles”, where dimX = n+ 1. The cup product
on the cohomology of the fibers of f induces a pairing

ψ : Rnf∗Q` ⊗Rnf∗Q` → Q`(−n).

The vanishing cycles are preserved by monodromy, and the pairing restricts to one on E , which is
non-degenerate on

ψ : E/(E ∩ E⊥)⊗ E/(E ∩ E⊥)→ Q`(−n).

Lastly, this whole situation is defined over a finite field Fq, and we denote by X0, U0, S0, E0, etc.
the corresponding objects over Fq. What we want to prove is:

Theorem 25. For all u ∈ |U0|, the polynomial det(1−F ∗u t, E0/(E0 ∩E⊥0 )) has rational coefficients.

We are going to argue as follows. We know that the zeta function of Xu is rational, and this
zeta function is

Z(Xu, t) =

2n∏
i=0

det(1− F ∗u t, Rif0∗Q`)
(−1)i+1

.

This can be compared to the polynomial in question. The filtrations

0→ E0 → Rnf0∗Q` → Rnf0∗Q`/E0 → 0

and
0→ E0 ∩ E⊥0 → E0 → E0/(E0 ∩ E⊥0 )→ 0

cut up Rnf0∗Q` into E0 and pieces which are constant on U0. This gives a factorization

Z(Xu, t) = Zs(t) · Zb(t)

where Zs contains the factors corresponding to the local systems with small small monodromy, and
Zb contains the factors corresponding to E0/(E0 ∩ E⊥0 ) (b for “big monodromy”). More precisely,

Zs(t) = det(1− F ∗u t, E0 ∩ E⊥0 )(−1)n+1 × det(1− F ∗u t, Rnf0∗Q`/E0)(−1)n+1

×
∏
i 6=n

det(1− F ∗u t, Rif∗Q`)
(−1)i+1

.

and
Zb(t) = det(1− F ∗u t, E0/(E0 ∩ E⊥0 )).

Of course, Zb(t) is the term that we are interested in showing has rational coefficients. We know
that Z(Xu, t) ∈ Q(t), so it suffices to show that Zs(t) ∈ Q(t).

Now, the local systems appearing in Zs(t) are not quite constant, but they are constant after
base change to Fq. It is worth recording an observation about this situation:
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Lemma 26. Let G0 be a Q`-local system on ε : U0 → Fq whose base change to U is constant. Then
there are units αi ∈ Q` such that for all x ∈ |U0|, we have

det(1− F ∗u t,G0) =
∏
i

(1− αdeg x
i t).

Proof. Indeed, the hypothesis implies that G0 is pulled back from a sheaf G0 on Spec Fq, namely
G0 := ε∗G0 (since the hypothesis says that ε∗ε∗G0 → G0 is an isomorphism after base change to Fq).

Then Fu acts as Frob− deg u, and we can take αi as in

det(1− Ft,G0) =
∏
i

(1− αit).

Let F0 = E0/(E0 ∩ E⊥0 ). Applying the Lemma to the product Z = Zs · Zf , we find that

Z(Xu, t) =

∏
i(1− α

deg u
i t)∏

j(1− β
deg u
j t)

· det(1− F ∗u t,F0).

Since the left side is in Q(t), so is the right side. To complete the proof, we will argue that the αi
and βj lie in Q.

7.7.2 Overview of the proof

The strategy for proving rationality of αi, βj is as follows. First, we may assume that there are no
coincidences between the αi and βj , since we can just delete them in pairs. We will try to show
that the family of functions in Q`(t)

Pu(t) =

∏
i(1− α

deg u
i t)∏

j(1− β
deg u
j t)

· det(1− F ∗u t,F0)

varying with u, allows us to reconstruct the αi and βj . Since every member of this family is rational,
this will show that the αi and βj are rational.

For example, we will try to characterize
∏

(1− βdeg u
j t) as being the denominator of Pu(t). The

difficulty is that the factors coming from det(1− F ∗u t,F0) might “accidentally” cancel some of the

(1 − βdeg u
j t). The key point is that this can only happen to a very limited extent, because F0

has big monodromy (by Theorem 24): this suggests that F ∗u behaves like a “random” element of
Sp((F0)u), as u varies. In particular, the eigenvalues of a random family of elements {Fu} will

behave very differently from the family of eigenvalues {βdeg u
j }.

The fundamental technical lemma, which makes the preceding intuition precise, is the following.

Proposition 12. Let (γi)1≤i≤P and (δj)1≤j≤Q be two families of numbers in Q`. Assume that
γi 6= δj for any i, j. Then there is a finite exceptional set K of integers 6= 1, and an exceptional
set L of density 0 in |U0|, such that for u ∈ |U0| with k - deg u for all k ∈ K and u /∈ L, the
denominator of ∏

i(1− γ
deg u
i t)∏

j(1− δ
deg u
j t)

det(1− F ∗u t,F0)

written irreducibly is exactly
∏
j(1− δ

deg u
j t).

50



In the next subsection we will complete the proof of rationality assuming Proposition 12. Then
we will go back and verify Proposition 12.

7.7.3 Proof of Theorem 25

As discussed, Proposition 12 gives an intrinsic characterization of the set {(βdeg u
j )j}u in terms of

the family {Pu(t)}u, which we know to have rational coefficients. A slightly subtle point is to show
that this actually pins down {βj}, which is the content of the following Lemma. Once we know
that, it will show that βj ∈ Q.

Lemma 27. Let K be any finite set of integers not containing 1 and (δj)1≤j≤Q, (εj)1≤j≤Q two
families of elements of a field. If for all sufficiently large n not divisible by the members of K we
have {δnj } = {εnj } then {δj} = {εj}.

Proof. By induction, it suffices to show that δQ = εj for some j. Consider the set of exponents n
for which we have

δnQ = εnj .

This equality is clearly closed under addition and subtraction, hence forms an ideal of Z, necessarily
of the form (nj). If none of these ideals (as j varies) is the unit ideal, then we can find an arbitrarily
large integer which is not divisible by any nj or member of K. But hypothesis tells us that such
an integer lies in some (nj), which is a contradiction.

We next try to give an intrinsic characterization of the αi.

Proposition 13. Let (γi)1≤i≤P and (δj)1≤j≤Q be two families of numbers in Q`. Set

R(t) =
∏
i

(1− γit)

S(t) =
∏
j

(1− δjt).

Suppose that for all u ∈ |U0| we have the divisibility∏
i

(1− δdeg u
j t) |

[∏
i

(1− γdeg u
i t) det(1− F ∗u t,F0)

]
.

Then S(t) | R(t).

Once this is established, it provides the following “recognition principle” for the αi. Consider
the family (varying with u) ∏

i

(1− αdeg u
i t) det(1− F ∗u t,F0) ∈ Q[t].

Consider the collection of (δj ∈ Q`), possibly with multiplicities, such that for all u

∏
j

(1− δdeg u
j t) |

[∏
i

(1− αdeg u
i t) det(1− F ∗u t,F0)

]
.

Proposition 13 tells us that each
∏
j(1 − δjt) divides a unique maximal such polynomial, which

must then be equal to
∏
i(1− αit).
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Proof of Proposition 13. Apply Proposition 12 to the family of polynomials∏
i(1− γ

deg u
i t)∏

j(1− δ
deg u
j t)

det(1− F ∗u t,F0).

By hypothesis the denominator is usually 1, so S(T ) | R(T ).

7.7.4 Proof of Proposition 12

For a geometric point u of U0, arithmetic fundamental group π1(U0, u) admits a surjection onto
Gal(Fq/Fq) whose kernel is the geometric fundamental group π1(U, u):

0→ π1(U, u)→ π1(U0, u)→ Gal(Fq/Fq)→ 0.

The monodromy action of π1(U0, u) on Fu defines a representation

ρ : π1(U0, u)→ GSp(Fu)

which restricts to the previous considered monodromy representation on the geometric fundamental
group:

π1(U, u)→ Sp(Fu).

Let µ be the homothety character of GSp(Fu). Then we know that the product of projection to Ẑ
and ρ takes π1(U0, u) into the subgroup

H ⊂ Ẑ×GSp(Fu)

of (n, g) such that
qn = µ(g).

Let
ρ1 : π1(U0, u)→ H

denote this representation, and let H1 be the image of ρ1.

Lemma 28. The image H1 of ρ1 is open in H.

Proof. We know that H1 surjects onto Ẑ, and by Theorem 24 the image of the geometric monodromy
subgroup in Sp(Fu) is open.

Lemma 29. For any δ ∈ Q`, the set Z of (n, g) ∈ H1 such that δn is an eigenvalue of g is closed
of measure 0.

Proof. The closedness is obvious. Fix n ∈ Ẑ, and let GSp(Fu)n denote the subset of g such that
µ(g) = qn. This is a torsor for Sp(Fu). It is easily verified that Zn := Z ∩GSp(Fu)n is the points
of a closed algebraic subvariety, which is necessarily of density 0. Thus, we have verified that
“fiberwise over Ẑ the subset Z has density 0. The result then follows from Fubini’s Theorem.

Finally we can complete the proof of Proposition 12. For each i and j, the set of exponents n
such that

γni = δnj

is obviously closed under addition and multiplication, hence forms an ideal in Z of the form (nij).
By hypothesis, nij 6= 1. Take K to be the union of the nij . By the preceding lemma and Cebotarev’s

density theorem, the set of u ∈ |U0| such that δdeg u
j is an eigenvalue of Fu is of density 0.
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